
Math 109 Calc 1 Lecture 5 

 

Derivatives + Rate of Change 

 
Section 2.7: Why Derivatives 

 

We are going to spend a lot of time over the next few classes learning about derivatives 

and how to differentiate functions.    

 

It might seem like a lot of effort for an operation that might have limited use. 

 

So, before we get into the details, I’d like to give you an overview about why this 

operation is so useful. 

 

First, I’m going to start with a very standard view. 

 

Driving down the highway 

 

Say that you are out driving down a long fast highway.  There’s a highway that you can 

take between San Francisco and Los Angeles called I5 or Interstate 5.    Much of this 

highway is straight and not all that scenic.  You can fly down I5 at from 70-80 without 

getting the attention of the state police.   Go down Route 101 or even Route 1 if you want 

scenery.   I5 is just for getting to LA fast. 

 

So, as you drive you have three gauges you can look at. 

 

1. A clock – this lets you watch the minutes and hours go by, let’s call this T 

2. An odometer – this lets you watch the miles go by, 1/10 at a time, let’s call this X 

3. A speedometer - this tells you how fast you are going, let’s call this V 

 

Since you are bored, you keep track of the time and the odometer.  You notice that 10 

minutes (or 1/6 of an hour) goes by and you travel 15 miles.  You realize this gives you 

enough information to calculate an average rate of travel. 

 

𝑉𝐴 =
15

1/6
= 80𝑚𝑝ℎ 

 

At the same time, you watch the speedometer move back and forth between 75mph and 

85mph.    

 

Let’s say you have a special computer in your car and at a rest stop you pull up a graph 

for this period of travel. 

 



 
 

So here the slope of the straight line represents the velocity you would have been 

traveling if you drove at a constant speed.   But clearly this is just an approximation.  At 

any given moment, you speed will vary.   

 

If you were to look at a specific place on the graph and draw a tangent to the curve at a 

point, the slope of that line would represent the velocity at that particular moment.  This 

is what the speedometer is showing you. 

 

 
 



Both of these values, Average Velocity and Instantaneous Velocity have their uses. 

 

Average velocity is valuable if you want to estimate how long the rest of your trip will 

take. 

 

Instantaneous velocity is useful for avoiding a speeding ticket. 

 

 

Differentiation 

 

The process of finding a curve whose value at each point in time represents slope of the 

tangent at that point is called differentiation or finding the derivative function. 

 

This process may be done analytically if we have an explicit description of the function, 

or it could be done approximately using data points that are sampled and recorded.  Over 

the next few days, we are going to learn how to differentiate a function analytically. 

 

Rate of Change 

 

If all this was good for was finding velocity it would have limited use.  

 

However, what we are finding here is a rate of change.   

 

Many rates of change that we will look at will have time as the independent variable. 

 

Here are some examples from the real world that you might want to consider. 

 

In medicine, a doctor may prescribe a drug for a patient.   The rate that the drug is 

absorbed and removed from a human body will depend on several variables.  One of the 

variables is the size and weight of the patient.  Another important variable is the current 

concentration of the drug in the patient at a moment in time. 

 
 

 



 

From Economics, money travels through the economy at different rates.  Some of the 

variables that it will depend on are the amount of currency in the system, and the lending 

rate that banks are charging. 

 
 

From Physics, the rate that a fluid such as water travels through a pipe will depend on 

the size of the pipe and the pressure. 

 
 

From Astronomy, the rate at which energy travels from the core of a star out to the 

surface depends on the temperature, pressure and density of the matter 

 

 



The Derivative at a Point 

 

With this in mind, let’s focus on how we find the derivative of a function by first looking 

at the slope at a particular point of a function.  

 

We can approximate the slope by taking a nearby point and using the slope equation 

 

𝑚 =
Δy

Δx
=

𝑦2 − 𝑦1

𝑥2 − 𝑥𝑦1
 

 

 
 

This gives us a formula for the approximate slope at a. 

 

𝑓′
𝑎𝑝𝑝𝑟𝑜𝑥

(𝑎)  =  
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

 
In order to find the instantaneous rate at a, we let x get closer and closer to a, that is we 

find the limit. 

 

𝑓′(𝑎)  =  lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

 
This important formula can be written in a more useful way by substituting the value h = 

x-a 

  



 
 

𝑓′(𝑥)  = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 
This gives us a way to analytically find a derivative if we can find the limit.  

 

Note that since x is unspecified here, this formula will give us the derivative as a function 

whose parameter is x. 

 

 

Definition of a Derivative 

A function f is said to be differentiable at x iff   lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
exists. 

 
 

  



Example: A parabola 

 

𝑓(𝑥)  =  𝑥2 

 

By the definition 

 

𝑓′(𝑥)  = lim
ℎ→0

(𝑥 + ℎ)2 − 𝑥2

ℎ
= lim

ℎ→0

𝑥2 + 2𝑥ℎ + ℎ2 − 𝑥2

ℎ
= 

 

lim
ℎ→0

2𝑥ℎ + ℎ2

ℎ
= lim

ℎ→0
(

ℎ

ℎ
) (2𝑥 + ℎ) = 2𝑥 

 
Example: A line 

 
𝑓(𝑥)  =  𝑚𝑥 + 𝑏 

 

By the definition 

 

𝑓′(𝑥)  = lim
ℎ→0

𝑚(𝑥 + ℎ) + 𝑏 − (𝑚𝑥 + 𝑏)

ℎ
=  

 

lim
ℎ→0

𝑚ℎ

ℎ
= lim

ℎ→0
(

ℎ

ℎ
) 𝑚 = 𝑚 

 
Which is of course what we expected of a straight line. 

 
Example: A square root 

 

𝑓(𝑥)  =  √𝑥 

 

By the definition 

 

𝑓′(𝑥)  = lim
ℎ→0

√𝑥 + ℎ − √𝑥

ℎ
(

√𝑥 + ℎ + √𝑥

√𝑥 + ℎ + √𝑥
) = 

 

 

lim
ℎ→0

𝑥 + ℎ − 𝑥

ℎ(√𝑥 + ℎ + √𝑥)
= lim (

ℎ

ℎ
)

ℎ→0

1

(√𝑥 + ℎ + √𝑥)
=

1

2√𝑥
 



Example: A repeat of a tangent to a circle 

𝑓(𝑥)  =  √1 − 𝑥2 

By the definition of a derivative 

 

𝑓′(𝑥)  

= lim
ℎ→0

√1 − (𝑥 + ℎ)2 − √1 − 𝑥2

ℎ
(

√1 − (𝑥 + ℎ)2 + √1 − 𝑥2

√1 − (𝑥 + ℎ)2 + √1 − 𝑥2
) = 

 

lim
ℎ→0

1 − (𝑥 + ℎ)2 − (1 − 𝑥2)

ℎ√1 − (𝑥 + ℎ)2 + √1 − 𝑥2
= lim

ℎ→0

−2𝑥ℎ − ℎ2

(√1 − (𝑥 + ℎ)2 + √1 − 𝑥2)
 

 

lim (
ℎ

ℎ
)

ℎ→0

−2𝑥 − ℎ

(√1 − (𝑥 + ℎ)2 + √1 − 𝑥2)
=

−2𝑥

2√1 − 𝑥2
=

−𝑥

√1 − 𝑥2
 

 
If you can think back to the first lecture in this class, we derived this using just geometry, 

and we found the same solution.  Hurrah! 

 

Differentiability vs. Continuity 

A function can be continuous at some number x without being differentiable there. 

For example, the absolute value function is continuous everywhere but not differentiable 

at zero. 

 

If f (x) = |x| 

 
 

𝑓′(0)  =  lim
ℎ→0

|0 + ℎ| − |0|

ℎ
= lim

ℎ→0

|ℎ|

ℎ
 

 

 

 

But from the left this equals -1 and from the right it equals 1, so the limit doesn’t exist, 

and therefore the derivative does not exist at x=0. 

 



What you should notice is that when a function comes to a sharp point, there will be no 

derivative. 

A final useful theorem 

 

If f is differentiable at x, then f is continuous at x. 

 

First a Lemma 

 

If f(x) is continuous, then lim
x→a

 f(x)  =  f(a)  

 

Let x=a+h so lim
𝑎+ℎ→𝑎

 𝑓(𝑎 + ℎ)  =  𝑓(𝑎)  

 

But clearly as 𝑎 + ℎ → 𝑎 we have ℎ → 0 so, 

 

lim
ℎ→0

 𝑓(𝑎 + ℎ)  =  𝑓(𝑎)  This is true for all x=a so 

 

So, f(x) is continuous iff  lim
ℎ→0

 𝑓(𝑥 + ℎ)  =  𝑓(𝑥) 

 

Proof 

 

If ℎ ≠ 0 then 𝑓(𝑥 + ℎ) − 𝑓(𝑥)  =  
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 ∙  ℎ 

 

Finding the limit of both sides we have 

 

lim
ℎ→0

[𝑓(𝑥 + ℎ) − 𝑓(𝑥)] = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 ∙ lim

ℎ→0
 ℎ 

 

With f differentiable we have 𝑓′(𝑥)  = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 

 

So, lim
ℎ→0

[𝑓(𝑥 + ℎ) − 𝑓(𝑥)] = 𝑓′(𝑥)  ∙ lim
ℎ→0

 ℎ 

 

But clearly lim
ℎ→0

 ℎ = 0. 

 

So, lim
ℎ→0

[𝑓(𝑥 + ℎ) − 𝑓(𝑥)] = 0 and therefore  

 

lim
ℎ→0

[𝑓(𝑥 + ℎ)] = 𝑓(𝑥) 

 

So, by our lemma, f (x) is continuous. 
 


