
Math 109 Calc 1 Lecture 4.5 

 

Limits at Infinity  
Section 2.6: Limits at Infinity 

 

First, we look at a rational function 
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The graph of the function looks as follows: 

 

 

 
 

Notice that as x gets larger and larger, the function gets closer and closer to the asymptote 

at y=1.  The same happens as x gets smaller and smaller. 

 

We have a name for this behavior.   

 

We say that the function has a limit at infinity. 

 

The notation is 
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The intuitive idea is that we can get as close to the limit as desired by making x large 

enough. 
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Recall that the graph of the function ( ) ( )tanf x x=  

Looks like this: 

 

 
 

We restrict the domain of this function to get an inverse the arctan(x) 

 

 
 

Note that  
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As with a limit to a value of x there is a formal definition for limits at infinity.    

We will not cover this definition; however, you may find it in Stewart on page 134. 

 

Instead we will stop with this intuitive understanding and proceed to show some 

examples on how you evaluate limits at infinity. 
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A few limits 

 

1
lim 0
x x→

=  

 

It’s easy to see that if that we want to get within some small number  of 0 we just 

need to make 
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The same argument holds for this limit only we just need to make 
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We can evaluate this more easily by dividing the numerator and the denominator by 2x  
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At this point one can use the limit laws to break this up, however it should be obvious 

at this point that the terms with x in their denominators will all go to zero leaving 
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The same strategy will work with this limit 
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In this example  
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We need a new strategy. 

 

We fall back on our knowledge of the pattern ( )( ) 2 2A B A B A B+ − = −  to deal with 

the square root.  We do this by multiplying our function by  

 
2

2

1

1

x x

x x

+ +

+ +
 

 

This give us  
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One last important example is the limit of the exponential function ( ) xf x a=  where 

a>1 as x goes to negative infinity. 

 

 
 

Inspection of any such graph should make it clear that 
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Limits at Infinity 

 

It should be obvious that not all limits at infinity will exist, for example: 
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The function ( ) 2f x x=  will get larger and larger as x gets larger. 

 

While this limit does not exist (DNE) we can indicate the way in which it gets larger as 

follows: 
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Keep in mind that infinity is not a number, but this notation is useful to indicate the 

direction that the function is going. 

 

This is another example of a limit at infinity. 

 

Other examples that should be obvious are: 
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Since the denominator goes to -1 and the numerator goes to infinity
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For this limit we can use a strategy already shown 


