Math 109 Calc 1 Lecture 34

Area Between Curves 5.6

We've been looking at a definite integral as the area beneath a curve, that is the area between the curve and y=0.

If the y coordinate of the curve is < 0 we treat this as negative area. What about the area between two curves?

Clearly the area below $f(x)$ minus the area below $g(x)$ is the area between the curves.

What if one or both functions drop below the X axis?

We can add a constant amount to both functions, moving them up above the line preserving the area. Then:

$$
\int_{a}^{b} f(x)dx + C - \left[\int_{a}^{b} g(x)dx + C\right] = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx + \int_{a}^{b} C dx - \int_{a}^{b} C dx =
$$
\n
$$
\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx
$$

What if we have two functions that cross over and we want all the area between them?

Then we need to calculate $(x) - g(x) dx = | f(x) - g(x) dx - | f(x) - g(x) dx + | f(x) - g(x) dx$ *d b c d* $\int_a^d |f(x)-g(x)| dx = \int_a^b f(x)-g(x)dx - \int_b^c f(x)-g(x)dx + \int_c^d f(x)-g(x)dx \int_a^b$ *a* Example 2: Find the area enclosed by $y = x^2$ and $y = 2x - x^2$

Setting these equal we find $x(x-1) = 0$ $x^2 = 2x - x^2$ $2x^2 - 2x = 0$

So the points of intersection are 0 and 1.

We integrate
$$
\int_0^1 |2x - x^2 - (x^2)| = \int_0^1 |2x - 2x^2| = \left[x^2 - \frac{2x^3}{3} \right]_0^1 = \left| 1 - \frac{2}{3} - (0 - 0) \right| = \frac{1}{3}
$$

Example 3: Find the area bounded by $y = e^x$ and $y = x$ on the interval [0,1]

Since $e^x > x$ for all $x \in [0,1]$

$$
A = \int_{0}^{1} (e^{x} - x) dx = \left[e^{x} - \frac{x^{2}}{2} \right]_{0}^{1} = e - \frac{1}{2} - (1 - 0) = e - \frac{3}{2}
$$

Example 3:

Sometimes it's difficult or impossible to find the points of intersection between curves, but we can approximate them with the calculator:

$$
y = \frac{x}{\sqrt{x^2 + 1}} \qquad y = x^4 - x
$$

Clearly (0,0) is a point of intersection.

Using the calculator's Calc/5:Intersection key we find the other intersection at 1.18

$$
\int_{0}^{1.18} \frac{x}{\sqrt{x^2+1}} - (x^4-x) dx
$$

We could solve this using anti-derivatives, but since it is already an approximation, use the Calc/7:Integration function giving .78538855

	υ	∽		υ	O	1 ₀ 1 V	1^{\wedge} ∸	14	10
v_A	v	34	54	67	76	84	89	92	95
v_{B}	v	\bigcap 1 ∠⊥	34	44	◡	56	60	63	65
$v_{\rm B}$ v_A -		\sim ⊥⊃	γ ∠∪	\mathcal{D} ں کے	າເ رے	28	29	29	30

Example 4: from the book, We have the speed of two cars at equal intervals

How can we calculate the integral over $v_A - v_B$?

Simpson's Rule?

What does this "Area" that we are calculating represent?

Sometimes it is easier to integrate along Y instead of X?

Example 5: Find the area between $y = x - 1$ and $y^2 = 2x + 6$

Already we have a problem because the 2nd equation is not a function.

But we can switch *x* and *y*

$$
x = y-1
$$
 and $x^2 = 2y+6$ or
 $y = x+1$ and $y = \frac{x^2-6}{2}$

We find the intersection $1=\frac{x^2-6}{x^2-6}$ 2 $x+1=\frac{x-1}{x+1}$

$$
x^2-2x-8=0
$$

$$
(x-4)(x+2)=0
$$

So

$$
\int_{-2}^{4} x + 1 - \left(\frac{x^2 - 6}{2}\right) dx = \int_{-2}^{4} -\frac{x^2}{2} + x + 4 dx = \left[-\frac{x^3}{6} + \frac{x^2}{2} + 4x\right]_{-2}^{4} = -\frac{64}{6} + 8 + 16 - \left(-\frac{8}{6} + 2 - 8\right) = 18
$$

Integrating using parametric equations.

Let's say we have a function $F(x)$ which we can't be described in terms of x but we have parametric equations.

$$
x = g(t) \qquad y = f(t)
$$

so
$$
y = F(g(t)) = f(t)
$$

The substitution rule tells us

$$
\int_{\alpha}^{\beta} F(g(t))g'(t)dt = \int_{g(\alpha)}^{g(\beta)} F(x)dx
$$

Example 6: The area under one cycle of a cycloid, $2\pi r$.

First Use calculator to show that for parametric equations $x = \theta - \sin \theta$ and $y = 1 - \cos \theta$ over $[0, 2\pi]$ that the integral is 3π .

$$
x = g(\theta) = r(\theta - \sin \theta) \qquad y = f(\theta) = r(1 - \cos \theta)
$$

At $\theta = 0$ and $\theta = 2\pi$ we have $(0,0)$ and $(2\pi r, 0)$

$$
\int_{0}^{2\pi r} F(x) dx = \int_{0}^{2\pi} f(\theta)g'(\theta) d\theta = \int_{0}^{2\pi} r(1 - \cos \theta) r(1 - \cos \theta) d\theta =
$$

so $r^{2} \int_{0}^{2\pi} 1 - 2\cos \theta + \cos^{2} \theta d\theta = r^{2} \int_{0}^{2\pi} 1 - 2\cos \theta + \frac{1 + \cos 2\theta}{2} d\theta =$
 $r^{2} \left[\frac{3}{2} \theta - 2\sin \theta + \frac{\sin 2\theta}{4} \right]_{0}^{2\pi} = r^{2} \left[\frac{3}{2} 2\pi - 0 + 0 - (0 - 0 + 0) \right] = 3\pi r^{2}$