Math 109 Calc 1 Lecture 32

Indefinite Integrals 5.4

If we have a function $f(x)$ and its antiderivative $F(x)$

recall that
$$
F'(x) = f(x)
$$
 and $\int_a^b f(x) dx = F(b) - F(a) = [F(x)]_a^b$

It is handy to have some notation to refer to this function $F(x)$ which we call an indefinite integral.

$$
F(x) = \int f(x) dx
$$

Unlike the definite integral, this is not a number. This is a function of *x* or rather a family of functions.

For example:

$$
\int x \, dx = \frac{x^2}{2} + C
$$
 where *C* is any constant $C \in \mathbb{R}$

The connection between an indefinite integral and a definite integral is that a definite integral can be found by evaluating an indefinite integral at its end points.

$$
\int_{a}^{b} f\left(x\right) dx = \left[\int f\left(x\right) dx\right]_{a}^{b}
$$

We already know a wide variety of antiderivatives, which I will summarize

Some formula's and patterns that will be useful for evaluating definite integrals.

$$
\int cf(x) dx = c \int f(x) dx
$$

$$
\int k dx = kx + C
$$

$$
\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx
$$

$$
\int x^{n} dx = \frac{x^{n+1}}{n+1} + C \text{ for } x \neq -1
$$

As a check
$$
\frac{d}{dx} \frac{x^{n+1}}{n+1} + C = x^{n} + 0 = x^{n}
$$

An Important pattern

$$
\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C
$$
 This comes up a lot, e.g.
\n
$$
\int \frac{2x+1}{x^2 + x + 4} dx
$$

\nSince $\frac{d}{dx} (x^2 + x + 4) = 2x + 1$
\n
$$
\int \frac{2x+1}{x^2 + x + 4} dx = \ln |x^2 + x + 4| + C
$$

Another pattern

Since
$$
\frac{d}{dx} f(x)^{-n} = (-n) f(x)^{-n+1} f'(x) = -n \frac{f'(x)}{f(x)^{n-1}}
$$

we have $\int \frac{f'(x)}{f(x)^{n}} dx = -\left(\frac{1}{n-1}\right) \frac{1}{f(x)^{n-1}} + C$

Example:

$$
\int \frac{x}{(x^2+1)^2} dx
$$

We know that $\frac{d}{dx}(x^2+1) = 2x$
So we have
$$
\int \frac{x}{(x^2+1)^2} dx = \frac{1}{2} \int \frac{2x}{(x^2+1)^2} dx = \frac{1}{2} \left(-\frac{1}{1}\right) \frac{1}{x^2+1} + C = \left(-\frac{1}{2}\right) \frac{1}{x^2+1}
$$

Example, find: $\int \sec(x) \tan(x) dx$, not using the obvious antiderivative:

$$
\int \sec(x)\tan(x)dx = \int \frac{1}{\cos(x)} \cdot \frac{\sin(x)}{\cos(x)}dx = \int \frac{\sin(x)}{\cos(x)^2}dx = -\int \frac{-\sin(x)}{\cos(x)^2}dx
$$

But
$$
\left[\cos(x)\right] = -\sin(x)
$$

So we have $\int \sec(x)\tan(x)dx = -\left(-\frac{1}{\cos(x)}\right) + C = \frac{1}{\cos(x)} + C = \sec(x) + C$

Yet Another Pattern

Recall that
$$
\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1 - x^2}}
$$

Quick Review, how do we know this?

$$
\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}
$$

If $x = \sin(y)$ then $\frac{dx}{dy} = \cos(y)$

$$
\frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - \sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}
$$

So clearly, we have
$$
\int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}(x) + C
$$

But likewise,
$$
\int \frac{f'(x)}{\sqrt{1 - f(x)^2}} dx = \sin^{-1}(f(x)) + C
$$

Example:
$$
\int \frac{x}{\sqrt{1-x^4}} dx
$$

Since $\frac{d}{dx}x^2 = 2x$

$$
\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{2x}{\sqrt{1-(x^2)^2}} dx = \frac{1}{2} \sin^{-1}(x^2) + C
$$

A similarly useful formula

$$
\int \frac{f'(x)}{1+f(x)^2} dx = \tan^{-1}(x) + C
$$

Net Change

We can rewrite $(x) dx = F(b) - F(a)$ *b* $\int_{a} f(x) dx = F(b) - F(a)$

as
\n
$$
\int_{a}^{b} F'(x) dx = F(b) - F(a)
$$

Where $F(x)$ is the rate of change of $F(x)$

Example:

Consider a reservoir which has water flowing into or out of it at a rate of $V(t)$

So $V(t_2) - V(t_1) = \int_{0}^{t_2} V'(t)$ 1 $\binom{1}{2} - V(t_1) = \binom{2}{1} V$ *t* $V(t_2) - V(t_1) = \int_{t_1}^{t_2} V'(t) dt$ is the change in the amount of water between time t_1 and t_2 .

Displacement vs. distance traveled.

Consider a train that travels back and forth on a straight rail at a velocity according to this graph.

If you wish to know its displacement, then

displacement =
$$
A_1 - A_2 + A_3 = \int_{t_1}^{t_2} v(t) dt
$$

If instead you want to know the distance traveled, then you want

distance =
$$
A_1 + A_2 + A_3 = \int_{t_1}^{t_2} |v(t)| dt
$$

Example:

A particle has velocity $v(t) = t^2 - t - 6$

Find the displacement and distance traveled between 1 and 4 seconds:

displacement =
$$
\int_{1}^{4} (t^2 - t - 6) dt =
$$

\n
$$
\left[\frac{t^3}{3} - \frac{t^2}{2} - 6t \right]_{1}^{4} = \frac{64}{3} - 8 - 24 - \left(\frac{1}{3} - \frac{1}{2} - 6 \right) = -\frac{9}{2}
$$
\ndistance = $\int_{1}^{4} |t^2 - t - 6| dt$
\nFind where the direction changes: $t^2 - t - 6 = (t - 3)(t + 2) = 0$
\nSo it changes at -2 and 3 seconds.
\n
$$
\int_{1}^{4} |t^2 - t - 6| dt = \int_{1}^{3} |t^2 - t - 6| dt + \int_{3}^{4} |t^2 - t - 6| dt =
$$
\n
$$
\left[\frac{t^3}{3} - \frac{t^2}{2} - 6t \right]_{1}^{3} + \left[\frac{t^3}{3} - \frac{t^2}{2} - 6t \right]_{3}^{4} =
$$
\n
$$
9 - \frac{9}{2} - 18 - \left(\frac{1}{3} - \frac{1}{2} - 6 \right) + \left| \frac{64}{3} - 8 - 24 - \left(9 - \frac{9}{2} - 18 \right) \right| =
$$

2 3 2 1 3 2

22 17 44 17 61 $-\frac{1}{3}$ + $\frac{1}{6}$ = $\frac{1}{6}$ + $\frac{1}{6}$ = $\frac{1}{6}$

Try in Class

$$
\int_{1}^{4} \sqrt{x} \, dx
$$
\n
$$
\int_{-1}^{3} (x+1)(x-1) \, dx
$$
\n
$$
\int_{-2}^{3} |(x+1)(x-1)| \, dx
$$
\n
$$
\int \frac{\cos(x)}{\sin(x)^5} \, dx
$$
\n
$$
\int \frac{t^5 - 4t^3 + t^2 - 8t + 5}{t^2} \, dt
$$
\n
$$
\int \frac{e^x}{\sqrt{1 - e^{2x}}} \, dx
$$