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5.2 Definite Integrals 

 

We saw last Thursday that we can describe the area under a curve by the limit of a sum. 

The book describes this sum slightly differently: 
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Where  
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We call this the definite integral of f from a to b and write it 
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If the limit exists we say that f is integrable on [a,b] 

 

We will find that this definite integral can be used to find the area under a curve as well 

as volumes of solids and the lengths of curves.  

 

Again, please note that a definite integral is a number.   

 

The variable x is just a dummy variable that disappears when you evaluate the integral.    

 

  



Some simple examples of calculating the area under a curve 

 

( )f x c=  

 
 

 

Note that the area under the curve is ( )A b a c bc ac= − = −  

 

We can write this using the notation 
b

a
xc  or  

b

a
xc  which indicates that you evaluate the 

xc at the upper limit and subtract the xc evaluated at the lower limit. 

 

Note that we could also have written this as ( )
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a
F x    where ( ) ( )'F x f x=  
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We try this again for a slightly more complex function ( )f x x=  

 
 

Here the area can be seen as the difference in area of the two triangles at points: 

{(0,0), (a,0), (a,f(a))} and 

{(0,0), (b,0), (b,f(b))} 
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Note that we could also have written this as ( )
b

a
F x    where ( ) ( )'F x f x=  

 

On Thursday we introduced  

( )
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f x dx  

We now would like to investigate how we might calculate this function in a more direct 

and exact manner than before. 

 

The preceding examples suggest the possibility that in general 
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We will see that this is the case. 

a b



To show this, we proceed by defining a function as follows: 

 

( ) ( )
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a
F x f t dt=   

 

Notice that this is a function of x and not a definite integral.   

It is a function which simply indicates the area under the curve f(x) from the point a 

the unknown point x. 

 

Now consider this limit, which should look familiar: 
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What does that look like graphically? 

 

 
 

In this diagram you can see that as h --> 0 the shaded area comes closer and closer to 

being a rectangle with area 
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As such 
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By the definition of the derivative, that means that  

( ) ( )'F x f x=  

 

That is F(x) is the anti-derivative of f(x) 

 

 

 



Let's let that settle in a bit with a few examples: 

 

What is the area beneath the function 2y x=  between 2 and 4? 

 

 
44 3

2

2 2

64 8 56

3 3 3 3

x
x dx

 
= = − = 
 

  

 

 

  

18

16

14

12

10

8

6

4

2

-5 5

f x( ) = x2



What is the area beneath the function ( )cosy x= between 
3


and 

2


? 

 
 

( ) ( ) ( ) ( )
2

2

3
3

1 3 2 3
cos sin sin 2 sin 3

2 22
x dx x







 
−

 = = − = − =   

What is the area beneath the function xy e=  between 0 and 2? 
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Also note that if f (x) < 0, the area is negative: 

What happens now if our function is below zero? 

 

 
 

 

If we go back to our Riemann Sum definition  
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We can see that the result of this sum is now negative.   It no longer represents the area, 

but it is the negative of the area between the function and y=0. 

 

It is also possible that our function is both below and above the x axis. 

 
 

Here the definite integral might be positive or negative depending on the limits. 

 

 

  



Properties of an Integral  
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then is follows that since 1 2A A A= +  
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Now re-arranging the limits, we can have 
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So, if you reverse the order of integration, you reverse the sign of the integral. 
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We can now show that 
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Looking back at the sums we can see that  
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Showing that  
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Substituting ( )g x−  for ( )g x  we get 
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Constants in integrals 
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so, we have 
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Integrals of Absolute Values 
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We can divide  ,a c  into sub-intervals where ( ) 0f x   or ( ) 0f x  . 

If ( ) 0f x  on a sub-interval  ', 'a b  then ( ) ( )
' '

' '

b b

a a

f x dx f x dx=   

If ( ) 0f x   on a sub-interval  ', 'a b  then ( ) ( )
' '

' '

b b

a a

f x dx f x dx= −   

So, we can find the integral ( )
b

a

f x dx  by summing the sub-intervals. 

 

  



Example: 
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Some Comparison Properties 

if ( ) 0f x  for a x b  then ( ) 0
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Note that not all functions are integrable. 

For example: 
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Condition for Integrability: 

 

If ( )f x is a continuous on  ,a b  or has at most a finite number of jump discontinuities  

 

then ( )f x is integrable on  ,a b , 

 

that is ( )
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Some Examples: 
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