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Indeterminant Forms, L’Hospital’s Rule 

Section 4.4 

 

Looking back at Limits 

 

Recall that one definition of a derivative that we’ve used is 
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An equivalent definition for the derivative at a point a is 
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Consider two continuous functions ( )f x and ( )g x  where  

( ) ( ) 0f a g a= = . 

Also assume that '( ) 0g a  and consider the following limit 
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Since ( ) ( ) 0f a g a= =  we have 
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Note that in this last expression, both the numerator and denominator have limits of zero, 

giving rise to the term an indeterminant form, in this case 
0

0
. 

 

This is a simplified version of what is called L’Hospital’s rule. It also applies to one sided 

limits as well as limits at infinity.   We will see that it applies to a number of 

indeterminant forms. 

 

This name comes from the Marquis de L’Hospital who did not discover this.  Instead it 

was discovered by Johann Bernoulli, a member of a large family of famous and 

productive mathematicians and physicists.   The Marquis purchased the formula and then 

published it as his own.   Such exchanges are frowned upon in academia today. 



Example: 

 

A simple example would be
1

ln
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x
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Here we see that the requirements are fulfilled. 

If x = 1 then ln( ) 1 0x x= − = . 

Also, the derivative of the denominator, '( ) 1 0g x =   

 

Using L’Hospital’s rule we find  
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L’Hospital’s rule is somewhat more general in that it can be applied to a number of 

different types of indeterminate forms. 

 

An indeterminate form is the where the result of a limit cannot be determined by merely 

using the continuity of functions to determine the final result. 

 

Examples of Indeterminate forms: 
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0
 

 

This is a common form where we have a limit in which the numerator and the 

denominator both approach zero.  The result is indeterminate and may be zero, a non-zero 

value or   depending on the behavior of the two functions. 
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This form occurs when both the numerator and the denominator of a function both 

increase without bound or decrease without bound. 

 

Example: 
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It’s possible to evaluate this without L’Hospital’s rule by dividing both the numerator and 

the denominator by 2x  
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Using L’Hospital’s rule we find 
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It’s EXTREMELY important to verify that a limit results in an indeterminate form 

before applying L’Hospital’s rule.   Otherwise you can get an incorrect result. 

 

Example: 
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Clearly the limit here is zero, however if one were to incorrectly apply L’Hospital’s rule 

one would get 
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Example: 
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First we note that lim x
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=  so we can apply L’Hospital. 
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Here we are again faced with the indeterminant form 



 so we can apply the rule again. 
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Other Indeterminate Forms 

 

There are other indeterminate forms for which L’Hospital’s rule can be applied. 
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We shall try some examples. 

 

 

  



0   

 

Example:  
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We can rewrite this as 
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 as follows 
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Example: 
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Both of these terms increase without bound so it is unclear what will happen to the limit.  

Once again we modify the expression, this time putting the terms over a common 

denominator. 
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Since both the numerator and denominator go to zero we can apply L’Hopital’s rule. 
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Multiplying the top and bottom by x we get 
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Since this also goes to the indeterminant form 
0

0
 we can apply the rule again. 
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Example: 
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First, we note that if 
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This allows us to apply the rule 
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Of course, this means that y = 
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Example: 
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Example: 
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So, y = 1 

  



Sometimes it requres multiple applications of the rule 

 

Example: 
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