Math 109 Calc 1 Lecture 18

Hyperbolic Functions

Section 3.11

Circular (aka Trigonmetric Functions)

There are a number of ways to define the trigonometric functions. One way involves the use of the unit circle.

The coordinates of the point intercepted by a ray from the center with angle θ are defined as the cosine and sine of the angle.

In a similar manner we can use a unit hyperbola to define new functions.

If you set δ (delta) equal to the interior area shown below, called a hyperbolic angle

Then you can express the hyperbolic functions in terms of e^x

We can also define the hyperbolic tangent as

$$
tanh(\delta) = \frac{\sinh(\delta)}{\cosh(\delta)} = \frac{e^{\delta} - e^{-\delta}}{e^{\delta} + e^{-\delta}}
$$

There are some remarkably similar identities and formulae associated with these functions.

The sum formulae are similar

Also note that we have similarity in odd evenness

Important derivatives

$$
[sinh(x)]' = cosh(x)
$$

$$
[cosh(x)]' = sinh(x)
$$

$$
[tanh(x)]' = sech2(x)
$$

The hyperbolic functions are not periodic like the trigonometric functions, however there is another very deep similarity. The trigonometric functions sine and cosine can be expressed as follows.

Taylor Series Expansion

If you take Calc 2 you will learn about Taylor series expansion of functions. Here is a brief introduction.

Say we want to try to expand e^x in terms of a polynomial $e^x = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$

We can start by evaluating both sides at zero. $e^0 = a_0 = 1$ So now know that $a_0 = 1$

We find the derivative of both sides and we find that $e^x = a_1 + 2a_2x + 3a_3x^2 + 4a_3x^3 \cdots$

Again, we evaluate at zero finding that that $a_1 = 1$

Repeating these steps, we find that

that $a_2 = 2$, $a_3 = 6$, $a_4 = 24$, $\cdots a_n = n!$

So, our expansion becomes

$$
e^x = \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots
$$

Using this same process, we find the following expansions for sine, cosine, and their hyperbolic equivalents.

$$
sin(x) = \frac{1}{1!}x^1 - \frac{3}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots
$$

\n
$$
sinh(x) = \frac{1}{1!}x^1 + \frac{3}{3!}x^3 + \frac{1}{5!}x^5 + \frac{1}{7!}x^7 + \cdots
$$

\n
$$
cos(x) = \frac{1}{0!}x^0 - \frac{2}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots
$$

\n
$$
cosh(x) = \frac{1}{0!}x^0 + \frac{2}{2!}x^2 + \frac{1}{4!}x^4 + \frac{1}{6!}x^6 + \cdots
$$

Applications

If you hang a cable or rope between two pedestals, the curve that will be formed is called a catenary. The equation of a catenary is

$$
y = a \cosh\left(\frac{x}{a}\right)
$$

This is the same curve used in a suspension bridge such as the Golden gate bridge.

If you rotate this surface around a center, you get a catenoid:

This is the shape a bubble that is created between two bubbles will make.

In architecture,

• if you have a free-standing (i.e. unloaded and unsupported) arch, the optimal shape to handle the lines of thrust produced by its own weight is $cosh(x)$. The dome of Saint Paul's Cathedral in England has a $cosh(x)$ cross-section.