
Math 109 Calc 1 Lecture 15 

 

 

Exponential Growth and Decay 
 

Section 3.8 

 

Many real-world variables have the property that their rate of growth or decay are a 

function of their value. 

 

Here are some examples. 

 

The population of animals or bacteria. 

 

The human population. 

 

Radioactive decay. 

 

Compound interest. 

 

We start with an abstract mathematical view of this type of phenomena. 

 

dy
ky

dt
=  

 

This indicates that the function y(t) has a rate of change equal to the value of y at some 

moment in time, times some constant.    

 

This is known as a differential equation as it includes both a function and one of its 

derivatives. 

 

The study of differential equations is vast.   Anyone studying Physics or Engineering will 

find themselves in at least an entire semester course dedicate to this subject.   Chemists, 

biologist, astronomers and economists will also likely find themselves in such a course. 

 

Since we have a function whose derivative is equal to the function times a constant, this 

causes us to consider any function we know of that might have this property.    The 

obvious answer is 

 

xy e=  as we know that x xd
e e

dx
=  

 

  



We embellish our function kty Ce=  and substitute it into our differential equation 

dy
ky

dt
=  

 
kt ktkCe kCe=  

 

So kty Ce= is a solution to our differential equation.    

 

The variable k seems related to the rate of change, and the variable C seems currently 

unbounded, any C will work. 

 

We note that when t = 0, 0y Ce C= =  so C is the value of y at time t. 

 

If we solve for k we see that 

 

dy

dtk
y

=  

We have a name for this, the relative growth rate. 

 

Population Growth  

Example: population growth 

 

Assume for the moment that relative growth rate of the human population has remained 

constant from 1950 through 2025.  It is doubtful that this is exactly the case, however it 

will serve as a reasonable estimate. 

 

Given that the world population was 2,560M in 1950 and 3,040M in 1960, what will the 

population be in 2025? 

 

Taking 1950 as t=0 and therefore in 1993 t =10 and in 2025 t = 75. 

 

Using ( ) ktP t Ce=  we find that ( ) 00 2560P Ce C= = =  

 

( ) 10 1010 2560 3040k kP Ce e= = =  

Solving for k  

 

3040
ln

2560 0.017185
10

k =   

 

So, we have ( ) 75 0.01718575 2560 9289P e = =  Since the current population of the world is 

about 7753M, one can conclude that the population growth rate has slowed. 



Radioactive Decay 

 

Radioactive substances decay at a rate proportional to their mass or the number of atoms 

present. 

 

For a decay problem, k = be negative. 

 

The decay times for a substance is listed as a half-life.    This is the time it takes for the 

amount of radioactive material to decrease in half. 

 

Example:  

 

The half-life of radium-266 is 1590 years.    

 

If you were to start with a kilogram of pure radium-266, after 1590 years, only half of the 

radium-266 atoms would be left. 

 

A sample of radium-266 has mass 100mg.   

 

To find a formula for the amount left after t years, note that  

 

( )0 100R = and ( )1590 50R =  

 

So, we have ( ) 100 ktR t e=  

 

And we know that ( ) 15901590 100 50kR e= =  

 

Solving for k we get ( )ln .5 /1590k =  

 

To find the amount of radium-266 after 100 years, 

 

( ) ( )1000ln .5 /1590
1000 100 64.66R e=   

 

To find when the amount of radium will decay to 30mg 

 

( )ln .5 /1590
30 100

t
e=  or ( )( )

30
ln / ln .5 /1590 2762

100
t

 
=  

 
 years 

  



Compound Interest  

 

If you invest some money P for principle at a certain yearly interest r compounded yearly 

for t years, you end up with the equation for the future value 

 

( ) ( )1
t

F t P r= +  

 

If instead we compound quarterly, the equation changes to  

 

( )
4

1
4

t
r

F t P
 

= + 
 

 

 

So, if you compound n times a year the equation becomes 

 

 

( )
/

1 1

rt
nt n r

r r
F t P P

n n

    
= + = +    

     

 

 

We substitute m=n/r 

 

( )
1

1

rt
m

F t P
m

  
= +  

   

 

 

And we take the limit as m goes to infinity, which is the same as n going to infinity 

 

( )
1 1

lim 1 lim 1

rt rt
m m

m m
F t P P

m m→ →

      
= + = +      

         

 

 

We examine this limit for large m 
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We can see that this number has a limit of e, the Euler constant. 

 

So, our formula for future value when we compound continuously is 

 

 

( ) rtF t Pe=  

 

 

Example: 

 

 

If you invest $5000 at %2 interest for 3 years, what is your future value? 

 

( ) (.02)(3)5000 $5309.18rtF t Pe e= = =  


