Math 109 Calc 1 Lecture 14

Inverse Function Rule
Section 3.6
Inverse Functions

Recall that an inverse function takes the output of another function as input and returns
the original input.

Example:
If f(x) = 2x + L then f71(x) = ==
The inverse of some functions is not a function, for example if

If f(x) = x? the its inverse is ++/x




However, if we suitably constrain the domain of a function, we can often make its inverse
a function.

If f(x) = x? with domain [0, ) then its inverse is v/x

Inverse functions have the properties that

FUF @) =) =x

It is also worth noting in the diagram that the graph of an inverse function is a reflection
of the function in the line y = x.




If we don’t know the derivative of the inverse of a function, we would like to find it using
the derivative of the original function. First let’s look at a simple example.

f (x)=3x
1
f(x)==x
(x)=7
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Note that the Ay gets reversed to A
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Looking at the derivative of a function
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If we switch the x and y axes, this becomes
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So, the derivative of the inverse of a function is the reciprocal of the derivative of the
function.
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or in Leibniz notation

(fF@)

dx _
dy
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This should seem plausible since reflecting a tangent line across y = x switches the x and
. Ay Ax
y coordinates and so the slope m = -~ becomes ay

Let’s check this with the function y = x?
We know that y' = 2x

dx_ldy_l 1
dy dx 2x 2
1

- d
Since x = [y we have ﬁ =75

Which is what we would have expected using the
power rule.

We next want to try this on some new ground.

We investigate the derivative of the function y = log, x by using the derivative of its
inverse, the function y = e*

We know that y' = e*

dx_1 dy 1 1
dy 'dx e* y

So, we conclude that iloge x =1
dx x



The Inverse Trig Functions
For y = sin(x) and y' = cos(x)

dx _dy 1 1 _ 1
dy dx cos(x) \[1-—sin?(x) +1—y2

So, we have that
1

=

We can also find that

Esin‘l(x) =

1
i

d -1 —
& cos™(x) =

Fory = tan(x) and y' = sec?(x)

dx 1 dy 1
dy dx  sec?(x)

At this point we have to recall a well-known trig identity.
Since, sin?(x) + cos?(x) = 1

sin®(x) cos®(x) 1

cos?(x) = cos?(x) cos?(x)
Therefore
tan?(x) + 1 = sec?(x)

dx 1 1

dy tanz(x)+1:y2+1
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Logarithmic Differentiation

Combining implicit differentiation and our knowledge of the derivative of the natural log
we have a method to simplify certain derivative problems.

Example
B x3/4\x2 +1
Y= "Bx + 2)5

As it stands this looks like a lot of work, combining the power, product and quotient
rules. But here we take a different approach by taking the log of both sides and using
implicit differentiation.

x3/4x2 +1
log, y = log, ST log, x3/4/x2 + 1 —log,(3x + 2)° =

3 1
Zloge x + Eloge(x2 +1) — 5log,(3x + 2)

Taking the log of both sides we get

1 3 2x 3 3 x 15

-y =—+ -5 =—+ -
yy 4x  2(x2+1) 3x+2 4x (x?+1) 3x+2

Multiplying by y

;L x3/*x2 + 1 (3+ X 15 )
Y=\ Gx+25 J\ax TGP+ 1) 3x+2



While this save some time and effort, it was still possible to do without logarithmic
differentiation. Next is an example where this is not the case.

y=x*
log, y =log, x* = xlog, x

Finding the derivative of both sides we get
1, , 1
;3’ = (xlog.x)" = x-;+logex =1+logex

Multiplying both sides by y

y' = x*(1 + log, x)



