Math 109 Calc 1 Lecture 10

Suggest to any students who are weak with Trigonometry to check out Lecture 10 **Review of Trigonometry** on my website

Quick Review using Leibniz Notation

Using Leibniz notation, for the exponential function e^x we have

$$\frac{d}{dx}e^x = e^x$$

We have the quotient formula

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}f(x) \cdot g(x) - f(x) \cdot \frac{d}{dx}g(x)}{[g(x)]^2}$$

Trig Functions

$\frac{d}{dx}sin(x) = cos(x)$	$\frac{d}{dx}cos(x) = -sin(x)$
$\frac{d}{dx}tan(x) = sec^2(x)$	$\frac{d}{dx}ctn(x) = -csc^2(x)$
$\frac{d}{dx}sec(x) = sec(x)tan(x)$	$\frac{d}{dx}csc(x) = -csc(x)ctn(x)$

Examples:

$$f(x) = e^{x+1} + 1$$

$$f(x) = \frac{3x^2 + x^3}{x}$$

Do this both ways, quotient rule, then reduce first

$$f(x) = \frac{\sqrt{x} - xe^x}{x}$$

Do this both ways, Quotient Rule and simplifying first

Find f'(x) and f''(x)

$$f(x) = x^2 e^x$$

$$f(x) = x^2 sin(x)$$

$$f(x) = \frac{\cos(x)}{1 - \sin(x)}$$

$$f(x) = \frac{\cos(x)}{1 - \sin(x)}$$

$$f(x) = \frac{1 + sec(x)}{1 - sec(x)}$$

Find an equation of the tangent line to the curve at the given point

$$f(x) = sin(x) + cos(x)$$
 at $(0,1)$

Find the limit

$$\lim_{x \to 0} \frac{\sin 7x}{x}$$
 by letting $u = 7x$

Review of composing functions:

$f(x) = e^{x} g(x) = \frac{x}{x+1}$	$f(x) = e^x g(x) = x^2$
f(g(x)) =	f(g(x))=
g(f(x)) =	g(f(x))=
$f(x) = \sqrt{x+1} g(x) = x^2$	$f(x) = \cos(x) g(x) = x^2$
f(g(x)) =	f(g(x))=
g(f(x)) =	g(f(x))=
$f(x) = x^2 + 4x + 3$ $g(x) = (x+1)^2$	$f(x) = \log_4(x+1)$ $g(x) = 8^{2x^2}$
f(g(x))=	f(g(x))=
g(f(x)) =	g(f(x))=