## Trigonometry 5 Mathematics 108

## **Working with Trig Functions**

The exact values of the sine and cosine can be determined exactly for angles that multiples of 30° and 45°.

Functions: We can find an exact expression for any multiple of 30° or 45°

| Angle | Sine | Cos | Angle | Sine | Cos | Angle         | Sine | Cosine | Angle         | Sine | Cos |
|-------|------|-----|-------|------|-----|---------------|------|--------|---------------|------|-----|
| 0°    |      |     | 90°   |      |     | 180°          |      |        | $360^{\circ}$ |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
| 30°   |      |     | 120°  |      |     | $210^{\circ}$ |      |        | $300^{\circ}$ |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
| 45°   |      |     | 135°  |      |     | 225°          |      |        | 315°          |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
| 60°   |      |     | 150°  |      |     | $240^{\circ}$ |      |        | $330^{\circ}$ |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |
|       |      |     |       |      |     |               |      |        |               |      |     |

## Solutions

| Angle       | (cos,sin)                                              | Angle | (cos,sin)                                               | Angle | (cos,sin)                                               | Angle | (cos,sin)                                               |
|-------------|--------------------------------------------------------|-------|---------------------------------------------------------|-------|---------------------------------------------------------|-------|---------------------------------------------------------|
| $0^{\circ}$ | (+1,0)                                                 | 90°   | (0,+1)                                                  | 180°  | (-1,0)                                                  | 360°  | (0,-1)                                                  |
| 30°         | $\left(+\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$        | 120°  | $\left(-\frac{1}{2}, +\frac{\sqrt{3}}{2}\right)$        | 210°  | $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$        | 300°  | $\left(+\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$        |
| 45°         | $\left(+\frac{1}{\sqrt{2}},+\frac{1}{\sqrt{2}}\right)$ | 135°  | $\left(-\frac{1}{\sqrt{2}}, +\frac{1}{\sqrt{2}}\right)$ | 225°  | $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ | 315°  | $\left(+\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ |
| 60°         | $\left(+\frac{1}{2},+\frac{\sqrt{3}}{2}\right)$        | 150°  | $\left(-\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$         | 240°  | $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$        | 330°  | $\left(+\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$        |

### **Special Angles with Exact Values**

Using our knowledge of special triangles from geometry: **30/60/90 triangles:** 

Take an equilateral triangle with sides 1 whose angles must all be 60°.

Drop a perpendicular from it's highest point to the base.

This divides the triangle into two congruent triangles.

By symmetry the angles of each of these triangles must be 30/60/90 degrees.

The base is 1/2 and the hypotenuse is 1 so by the Pythagorean theorem we get the second leg to be  $\frac{\sqrt{3}}{2}$ 



This tells us that

$$\sin\left(60^{\circ}\right) = \frac{\sqrt{3}}{2}$$
$$\cos\left(60^{\circ}\right) = \frac{1}{2}$$

$$\cos\left(60^{\circ}\right) = \frac{1}{2}$$

# Isosceles right triangles:

Given a right isosceles triangle with hypotenuse 1 we know immediately that the smaller angles are 45° and by the Pythagorean theorem, the legs are  $\frac{1}{\sqrt{2}}$ 



This tells us that

$$\sin\left(45^{\circ}\right) = \frac{1}{\sqrt{2}}$$

$$\sin\left(45^{\circ}\right) = \frac{1}{\sqrt{2}}$$
$$\cos\left(45^{\circ}\right) = \frac{1}{\sqrt{2}}$$

Definitions of the other Trigonometric Functions

| <b>T</b> | tan(x) | $\sin(x)$            |
|----------|--------|----------------------|
| Tangent: | tan(x) | $\overline{\cos(x)}$ |

Cotangent: 
$$\cot(x) \operatorname{or} \operatorname{ctn}(x)$$
  $\frac{\cos(x)}{\sin(x)}$ 

Secant: 
$$\sec(x)$$
  $\frac{1}{\cos(x)}$ 

Cosecant: 
$$\csc(x)$$
  $\frac{1}{\sin(x)}$ 

## **Solving Triangle Problems**



#### Tree Problem



How tall is the tree?

HW: 5.2: 5-10, 13-15, 23-26

HW: 6.2: 3, 4. 9, 10, 15-20, 29-32, 39, 40,

HW: 6.3 5-8, 37, 38, 47, 48, 49