Addition Subtraction Formulas

We're going to search for a summation formulae for the cosine of the sum of two angles:

$$\cos(x+y) = ?$$

The proof we will show is a little obscure. You are not responsible for the steps, however you will need to know the result.

We start with a unit circle with point A at the coordinates (1,0) and point P an arbitrary point in the first quadrant.

We label the angular size of arc \widehat{AP} r1

Next we add an arbitrary point Q in the 2nd quadrant and label the angular size of arc \widehat{PR} r2.

That's the geometric setup for our proof.

The angle measure of an included The coordinates of A are (1, 0)

The coordinates of Q are $(\cos(r1+r2), \sin(r1+r2))$

The coordinates of P are $(\cos(r1), \sin(r1))$

The coordinates of R are (cos(-r2), sin(-r2))

Using the distance formula and setting $\overline{AQ} = \overline{PR}$ we have:

$$\sqrt{\left[\cos(r_1 + r_2) - 1\right]^2 + \left[\sin(r_1 + r_2) - 0\right]^2} = \sqrt{\left[\cos(r_1) - \cos(-r_2)\right]^2 + \left[\sin(r_1) - \sin(-r_2)\right]^2}$$

Squaring both sides:

$$\left[\cos(r_1 + r_2) - 1\right]^2 + \sin^2(r_1 + r_2) = \left[\cos(r_1) - \cos(r_2)\right]^2 + \left[\sin(r_1) + \sin(r_2)\right]^2$$

Expanding:

$$\cos^{2}(r_{1} + r_{2}) - 2\cos(r_{1} + r_{2}) + 1 + \sin^{2}(r_{1} + r_{2}) =$$

$$\cos^{2}(r_{1}) - 2\cos(r_{1})\cos(r_{2}) + \cos^{2}(r_{2}) +$$

$$\sin^{2}(r_{1}) + 2\sin(r_{1})\sin(r_{2}) + \sin^{2}(r_{2})$$

$$\left[\cos^{2}(r_{1}+r_{2})\right] - 2\cos(r_{1}+r_{2}) + 1 + \left[\sin^{2}(r_{1}+r_{2})\right] =$$

$$\left[\cos^{2}(r_{1})\right] - 2\cos(r_{1})\cos(r_{2}) + \left[\cos^{2}(r_{2})\right] +$$

$$\left[\sin^{2}(r_{1})\right] + 2\sin(r_{1})\sin(r_{2}) + \left[\sin^{2}(r_{2})\right]$$

$$-2\cos(r_1 + r_2) + 2 =$$

$$-2\cos(r_1)\cos(r_2) + 1 + 2\sin(r_2)\sin(r_2) + 1$$

Subtracting 2 from each side and dividing by -2

$$\cos(r_1 + r_2) = \cos(r_1)\cos(r_2) - \sin(r_1)\sin(r_2)$$

This is the cosine summation formulae

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Plugging in -y for y and simplifying using odd/even identities

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

We can write this

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

The derivation for sin(x+y)

We use our co-function identity

$$\cos(90^{\circ} - (x+y)) = \sin(x+y)$$

We re-arrange the left side and expand

$$\sin(x+y) = \cos((90^{\circ} - x) - y) =$$

$$\cos(90^{\circ} - x)\cos(-y) - \sin(90^{\circ} - x)\sin(-y) =$$

$$\sin(x)\cos(y) - \cos(x)(-1)\sin(y) =$$

$$\sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$

Substituting -y for y

$$\sin(x + y) = \sin(x)\cos(-y) + \sin(-y)\cos(x)$$

Using odd/even identities it becomes

$$\sin(x-y) = \sin(x)\cos(y) - \sin(y)\cos(x)$$

To find tan(x+y):

$$\tan(x+y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y - \sin x \sin y}$$

$$\frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y - \sin x \sin y} \cdot \frac{\frac{1}{\cos x \cos y}}{\frac{1}{\cos x \cos y}} = \frac{\frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}}{1 - \frac{\sin x \sin y}{\cos x \cos y}} = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

so:

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

Similarly:

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Using the formulas

(a)
$$\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ})$$

(b)
$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

Double Angle Formulas:

If

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$

then

$$\sin(x+x) = \sin(x)\cos(x) + \sin(x)\cos(x)$$

or simplified

$$\sin(2x) = 2\sin(x)\cos(x)$$

Similarly

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

Using the Pythagorean identity we get two other useful forms:

$$\cos(2x) = 2\cos^2(x) - 1$$

and

$$\cos(2x) = 1 - 2\sin^2(x)$$

The tangent double angle then becomes

$$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$$

HW

7.2: 5-8, 32, 35, 43

7.3: 5-8, 17, 21, 25