
Trigonometry 11 Mathematics 108 

Identities 

 

What is an identity? 

 

An identity is an equation showing an equivalence between two expressions for all values 

of a variable. 

 

Example: 

 

x + x - 6 = (4x - 12)/ 2     

 

To show the first two are equivalent we state a theorem: 

 

A = 2(x-3) if and only if  A = x + x - 6 

 

We start with 2(x-3) and manipulate it until we end up with x + x - 6 as follows: 

 

2(x-3) = 2x - 2(3) = x + x - 6,   To prove the only if part we would have to start with 

 

x + x - 6 and show 2(x-3) but in this example, we can just state that the steps are 

reversible. 

 

 

Let's review some basic trigonometric equivalences. 
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A simple Identity Proof 

 

Using these, let's try a simple proof of an identity: 
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The steps would look like this: 
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Or similarly we can just state that "The steps are reversible". 

 



Pythagorean Identities 

 

Previously we demonstrated the Pythagorean identity 

 
2 2sin cos 1x x+ =  

 

This identity leads to two more identities 
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2 2sin cos 1x x+ =  
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These three identities are all referred to as Pythagorean identities. 

 



Even-Odd Identities 

 

 

We've previously see that  

 

( ) ( )sin sinx x− = −  showing sine to be an odd function and 

 

( ) ( )cos cosx x− =  

 

Showing cosine to be an even function. 

 

Let's check the other 4 trigonometric functions 
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The same steps show co-tangent is also odd 
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Cofunction Identities 
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that 

( )sin cos 90θ θ= −�  

and similarly 
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Using these we can find 
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Simplifying Trigonometric Expressions. 

 

When faced with a trigonometric expression, one useful strategy is to rewrite the 

expression in terms of sines and cosines and then simplify. 
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Another strategy is combine fractions. 
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A note on disproving identities 

 

While proving an expression is an identity requires a proof,  

disproving an identity merely requires a single case. 

 

You might suspect that sin cos 1x x+ =  is an identity since it is true for  

0 90and
� �  

 

But for 180�  we get sin180 cos180 0 1 1 1− −+ = + = ≠� �  

 

 

When proving an identity, performing the same operation on each side is not valid unless 

both operations are reversible. 

 

So for example 
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is not a valid proof, and the original expression is not an identity. 

 



Example 
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Example 
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You can however work both sides of the identity.  

Once you find the two sides equal, you can use the fact that your steps are reversible to 

finish the proof. 
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Note that since these steps are reversible, the proof is valid 

 


