Lesson Plan 6 Phase Shift, Modeling Math 48C Mitchell Schoenbrun

1) Attendance

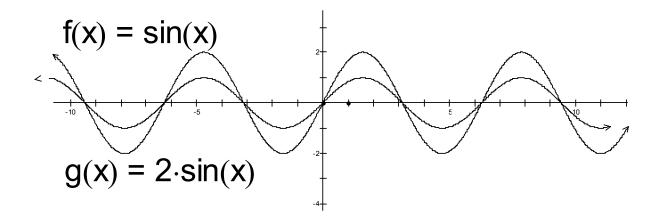
Review of Phase Shift

Definition: A Phase shift is the portion of one period shifted horizontally.

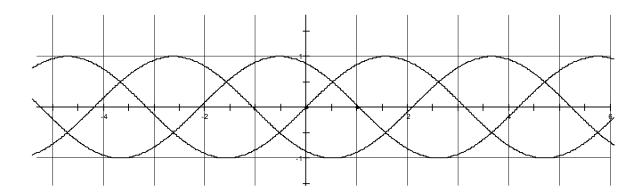
Question: If a function has a phase shift of 1, what function do you get?

Units: Sometimes Phase shifts are measured in degrees, $1 = 360^{\circ}$.

Application: Power in an AC circuit.


US Current is AC 60hz 120 Volts:

Amplitude is 120 Volts, so Voltage varies from +120V to -120V. The period is 1/60 second and the frequency is 60hz or 60 times per second


AC uses two wires, with the Voltage between the wires changing over time:

Some US homes also have 220Volt 60hz AC

For Industrial Applications, a 4 wire 3 Phase 120 Volt system is used to provide more and smoother power. One ground wire and three hot wires each carry 120V 60hz, but at a phase shift of 1/3 and 2/3, or 120° and 240° .

Have Students do first page of handout

Modeling a Sinusoidal Function

Today we are going to learn about modeling sinusoidal functions to real world phenomenon.

Recall that sines and cosines are merely phase shifted functions:

$$\sin\left(\theta + \frac{3\pi}{2}\right) = \cos\left(\theta\right)$$

So we can use either function in our model. Typically we will use the sine function.

Recall our general sine function:

$$f(\theta) = A\sin(B(\theta - C)) + D$$

What are the following:

$$A = \underline{\hspace{1cm}} |A| = \text{the Amplitude}$$

$$B = \underline{\hspace{1cm}} |B|/2\pi = \text{the frequency, or} \quad 2\pi/|B| = \text{the period}$$

$$C = \underline{\hspace{1cm}} C/\text{Period} = \text{the phase shift or Horizontal Shift}$$

$$D = \underline{\hspace{1cm}} D = \text{The Vertical Shift or the midline}$$

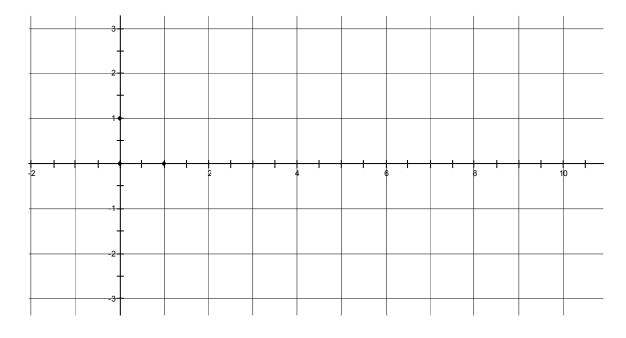
Example of modeling from Data:

X	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
Y	4	5.2	6	6	5.2	4	2.8	2	2	2.8	4	5.2

Max = _____

Min = _____

 $A = Amplitude = (Max - Min)/2 = \underline{\hspace{1cm}}$


D = Midline = (Max + Min)/2 =

Period =

so

B = ____

 $f(x) = A \sin(B(x-C)) + D$ So pick a starting point to figure out C, the horizontal offset Graph it

Example of modeling from Data:

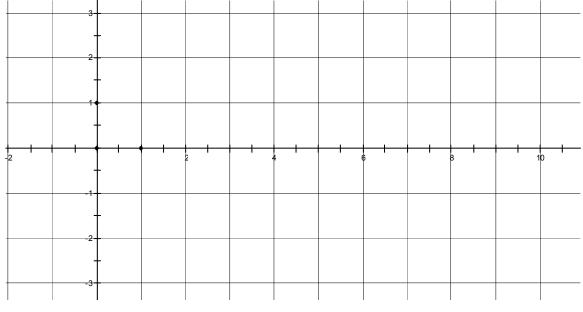
X	0	5	10	15	20	25	30	35	40	45	50	55
Y	1	1.3	1.5	1.5	1.3	1	.7	.5	.5	.7	1	1.3

Max = _____

Min = _____

 $A = Amplitude = (Max - Min)/2 = \underline{\hspace{1cm}}$

D = Midline = (Max + Min)/2 =


Period =

so

B = ____

 $f(x) = A \sin(B(x-C)) + D$ So pick a starting point to figure out C, the horizontal offset

Graph it

