Lesson Plan 3 - Unit Circle & Trig Functions Part 1

- 1) Take attendance
- 2) Homework
- 3) Quiz on 6.1, 8.1, 8.3 On Monday
- 4) Discuss Exact and Inexact answers

View of Trig functions from the point of view of a Right Triangle

h-hypotenuse o-opposite a-adjacent

а

$$\sin(\theta) = \frac{o}{h}$$
$$\cos(\theta) = \frac{a}{h}$$
$$\tan(\theta) = \frac{o}{a}$$

Memory Device:

SOH-CAH-TOA (Sounds indian)

SOH (Sin = 0/H) Sine = Opposite/Hypoteneuse

CAH (Cos=A/H) Cosine = Adjacent/Hypoteneuse

TOA (Tan=O/A) Tangent = Opposite/Adjacent

This is only useful when you have a right triangle. Note that $0 < \theta < \frac{\pi}{2}$.

Review of Sines and Cosines

http://schoenbrun.com/foothill/math48c-2/mpeg/Ratios.mp4

What kind of problems can we solve with this?

Given any two of θ , h, a or o, we can find all missing angles and sides of the triangle.

Example: Given a right triangle with hypotenuse length 10 and missing sides and $\theta = 60^{\circ}$ what are the missing angles and sides?

 $sin(60^{\circ}) = \sqrt{3}/2$ $\cos(60^{\circ}) = 1/2$

Example: Given a right triangle with hypotenuse length 10 and leg 4, what are the missing angles and sides?

Finding the value of Sines and Cosines

Some ancient history

How we used to get the values of arbitrary trig functions from a table.

254 Tables for Use in Trigonometry														
				NAT	URAL	TRIC	GON(FIV	ON E I	IETF PLA	RIC FU CES	UNCTI	IONS		
28° (2	208°)					(33 1°) 151 °		29° (:	2 09°)				
,	Sin	Tan	Cot	Cos	Sec	Csc	7		,	Sin	Tan	Cot		~
-	48047	62171	1 9907	89005	1 1206	9 1201	60			48481	65401			_
ĭ	46973	.53208	1.8794	.88281	1.1327	2.1289	59		1	.48506	.55469	1.8040	.87462	
2	.46999	.53246	1.8781	.88267	1.1329	2.1277	58		2	.48532	.55507	1.8016	.87434	
3	.47024	.53283	1.8768	.88254	1.1331	2.1266 2.1254	56		3	.48557	.55545	1.8003	.87420	۱ł
-		1000000	1.0100								.00000	1.1991	.87406	ł
5	.47076	.53358	1.8741	.88226	1.1334	2.1242	55		5	.48608	.55621	1.7979	.87391	
7	.47127	.53432	1.8715	.88199	1.1338	2.1231	53		7	.48659	.55697	1.7966	.87377	
8	.47153	.53470	1.8702	.88185	1.1340	2.1208	52		8	.48684	.55736	1.7942	.87349	1
9	.47178	.53507	1.8689	.88172	1.1342	2.1196	51		9	.48710	.55774	1.7930	.87335	1
10	.47204	.53545	1.8676	.88158	1.1343	2.1185	50		10	.48735	.55812	1.7917	.87291	1
11	.47229	.53582	1.8663	.88144	1.1345	2.1173	49		11	.48761	.55850	1.7905	.87306	ŀ
12	.47255 .47281	.53620	1.8650	88130	1.1347	2.1162	48 47		12	48786	55026	1.7893	.87292	
14	.47306	.53694	1.8624	.88103	1.1350	2.1139	46		14	.48837	.55964	1.7868	87278	
, <u> </u>	-	E0=00	1 0011	00000	1 1000	0.110								
16	.47358	.53732	1.8598	.88075	1.1352	2.1127	45		15	48862	.56003	1.7856	.87250	
17	.47383	.53807	1.8585	.88062	1.1356	2.1105	43		17	.48913	.56079	1.7832	.87221	
18	.47409	.53844	1.8572	.88048	1.1357	2.1093	42		18	.48938	.56117	1.7820	.87207	
19	.47434	.03682	1.8559	.88034	1.1359	2.1082	41		19	.48964	.56156	1.7808	.87193	ļ
20	.47460	.53920	1.8546	.88020	1.1361	2.1070	40		20	.48989	.56194	1.7796	.87178	
21	.47486	.53957	1.8533	.88006	1.1363	2.1059	39		21	.49014	.56232	1.7783	.87164	
23	.47537	.54032	1.8520	.87979	1.1366	2.1048	37		22	.49040	.56300	1.7771	87150	1
24	.47562	.54070	1.8495	.87965	1.1368	2.1025	36		24	.49090	.56347	1.7747	.87121	
25	47599	54107	1 8499	87051	1 1270	2 1014	20		95	40110	56205	1 7795	07105	
26	.47614	.54145	1.8469	.87937	1.1372	2.1002	34		26	.49141	.56424	1.7723	.87093	
27	.47639	.54183	1.8456	.87923	1.1374	2.0991	33		27	.49166	.56462	1.7711	.87079	ŀ
28	.47665	.54220	1.8443	.87909	1.1375	2.0980	32		28	.49192	.56501	1.7699	.87064	ł
-"	.11080	.01200	1.0400	.01080		4.0909			1 ² °	.49217	.00089	1.1081	0.01090	ľ
30	.47716	.54296	1.8418	.87882	1.1379	2.0957	30		30	.49242	.56577	1.7675	87036	ŀ
31 32	.47741	.54333	1.8405	.87868	1.1381	2.0946	29		31	49268	56616	1.7663	87021	ľ
33	.47793	.54409	1.8379	.87840	1.1384	2.0924	27		33	.49318	.56693	1.7639	.86993	ŧ
34	.47818	.54446	1.8367	.87826	1.1386	2.0913	26		34	.49344	.56731	1.7627	.86978	ł
35	.47844	.54484	1.8354	.87812	1.1388	2.0901	25		35	.49369	.56769	1.7615	.86964	
36	.47869	.54522	1.8341	.87798	1.1390	2.0890	24		36	.49394	.56808	1.7603	.86949	ł
37	.47895	.54560	1.8329	.87784	1.1392	2.0879	23		37	.49419	.56846	1.7591	.86935	I
39	.47946	.54635	1.8303	.87756	1.1395	2.0857	21		39	.49445	.56923	1.7567	.86908	ł
			1 0001	005-10	1 1000	0.0010				10.00	-	1 7750	86909	l
41	.47971	.54073	1.8291	.87729	1.1397	2.0846 2.0835	20		40	.49495	.50962	1.7544	.86878	
42	48022	.54748	1.8265	.87715	1.1401	2.0824	18		42	.49546	.57039	1.7532	.86863	f
43	.48048	.54786	1.8253	.87701	1.1402	2.0813	17		43	.49571	.57078	1.7520	86849	Į.
9 4	.48073	.04824	1.8240	.87687	1.1404	2.0802	16		44	.49596	.57116	1.1908	.00001	L
45	.48099	.54862	1.8228	.87673	1.1406	2.0791	15		45	.49622	.57155	1.7496	.86820	
46	.48124	.54900	1.8215	.87659	1.1408	2.0779	14		46	.49647	.57193	1.7485	.86791	
48	.48175	.54938	1.8202	.87631	1.1410	2.0768	13		47	49672	.57232	1.7461	.86777	ŀ
49	.48201	.55013	1.8177	.87617	1.1413	2.0747	ĩĩ		49	.49723	.57309	1.7449	.86762	
50	49994	55051	1.8105	97602	1 1/15	9 0726	10		50	40749	57348	1.7437	.86748	ł
51	.48252	.55089	1.8152	.87589	1.1417	2.0730	9		51	.49773	.57386	1.7426	.86733	Ľ
52	.48277	.55127	1.8140	.87575	1.1419	2.0714	8		52	.49798	.57425	1.7414	.86719	ľ
53 54	48303	.55165	1.8127	.87561 87546	1.1421	2.0703	7		53	.49824	.57464	1.7402	.86690	ŀ
1	.10020	.00203	1.0110	.01 940	1.1320	2.0092	Ů		37	.18018	.01000		00075	
55	.48354	.55241	1.8103	.87532	1.1424	2.0681	5		55	.49874	.57541	1.7379	86661	
56	48379	.55279	1.8090	.87518 87504	1.1426	2.0670	4		56	.49899	.57580	1.7355	86646	Ľ
58	.48430	.55355	1.8065	.87490	1.1430	2.0648	2		58	49950	.57657	1.7344	.86632	1
59	.48456	.55393	1.8053	.87476	1.1432	2.0637	1		59	.49975	.57696	1.7332	-90011	I
	40/01	.55431	1.8040	.87462	1.1434	2.0627	0		60	.50000	.57735	1.7321	.86603	Ľ
60	10202.						1		1 1					
50 	.16969					~				0	Cat	Ten	Sin	đ

Note the degrees listed on the top and bottom

Complementary Angles

Note that:

 $\sin(\theta) = \frac{A}{C} \qquad \cos(\theta) = \frac{B}{C}$ $\cos(90^\circ - \theta) = \frac{A}{C} \qquad \sin(90^\circ - \theta) = \frac{B}{C}$

So we have the following Identities

 $\sin(90-\theta) = \cos(\theta)$ $\cos(90-\theta) = \sin(\theta)$

So we really only need to know the sines and cosines of the angles between 0° and 45°.

Using a Calculator to find Sines and Cosines ALWAYS CHECK THE MODE!!!!!!!

Unit Circle View of Trig functions

Here we redefine the sin and cosine functions as coordinates on the unit circle.

Take a look at this animation and notice that the sine and cosine function are doing the same thing, only out of sync by 90°

http://schoenbrun.com/foothill/math48c-2/gsps/CircularMotion.gsp

This produces the same function values as the triangle, but is not limited to $0 < \theta < \frac{\pi}{2}$

Note that in the 2nd quadrant the sine is still positive but the cosine is negative.

In the third quadrant both are negative

And in the 4th quadrant only the sine is negative.

Here we have a map of showing what sign's of the two functions in each quadrant.

There are some important angles that now have sines and cosines:

 $\sin(0^{\circ}) = 0$ $\cos(0^{\circ}) = 1$ $\sin(90^{\circ}) = 1$ $\cos(90^{\circ}) = 0$ $\sin(180^{\circ}) = 0$ $\cos(180^{\circ}) = -1$ $\sin(270^{\circ}) = -1$ $\cos(270^{\circ}) = 0$

Reference Angles

A **Reference angle** is an angle in the first quadrant. Every angle will have a corresponding References Angle.

The trigonometric functions of an angle will have the same value as for the corresponding reference angle or it's negative.

First we look at angles $0^{\circ} \le \theta \le 360^{\circ}$

Note, that the reference angle for any angle in the first quadrant is itself.

For an angle in the 2nd quadrant, draw a line parallel to the X-axis through the point where the angle intersects the unit circle and then find where this line intersects the unit circle in the first quadrant.

Note that for the 2nd quadrant $\theta_R = 180^\circ - \theta$

Also note that

 $\sin(\theta_{R}) = \sin(\theta)$

but

 $\cos(\theta_{R}) = -\cos(\theta)$

For an angle in the 3rd quadrant, extend the terminal ray in the opposite direction and find where it intersects the unit circle.

Note that for the 3rd quadrant $\theta_R = \theta - 180^\circ$

Also note that

 $\sin\left(\theta_{R}\right) = -\sin\left(\theta\right)$

and

 $\cos(\theta_{R}) = -\cos(\theta)$

Finally for an angle in the 4th quadrant draw a line parallel to the y axis from where the angle intersects the unit circle.

Note that for the 4th quadrant $\theta_R = 360^\circ - \theta$

Also note that

 $\sin(\theta_R) = -\sin(\theta)$

but

 $\cos(\theta_{R}) = \cos(\theta)$

For any angle $\theta < 0^{\circ}$ or $\theta > 360^{\circ}$

There is some angle θ_u , u as in unit-circle for which

 $\theta = \theta_u + n360^\circ$

where *n* is an integer such that $0^{\circ} \le \theta_u \le 360^{\circ}$

With
$$\sin(\theta_u) = \sin(\theta)$$

and

 $\cos(\theta_u) = \cos(\theta)$

So for calculation purposes, we only need to know the values of the sine and cosine between 0° and 45° .

To do this first find θ_u between 0° and 360°.

Then find the Reference angle checking whether the sign changes.

Finally, if an angle is $> 45^{\circ}$, find the other function (sine or cosine) of it's complement.

Of course if we are using a calculator, there's no reason to go through this process!

Handout Part 1!

Special Angles with Exact Values

Using our knowledge of special triangles from geometry: **30/60/90 triangles:**

Take an equilateral triangle with sides 1 whose angles must all be 60°.

Drop a perpendicular from it's highest point to the base.

This divides the triangle into two congruent triangles.

By symmetry the angles of each of these triangles must be

30/60/90 degrees.

The base is 1/2 and the hypotenuse is 1 so by the Pythagorean theorem we get the second leg to be $\frac{\sqrt{3}}{2}$

This tells us that

$$\sin\left(60^\circ\right) = \frac{\sqrt{3}}{2}$$
$$\cos\left(60^\circ\right) = \frac{1}{2}$$

Isosceles right triangles:

Given a right isosceles triangle with hypotenuse 1 we know immediately that the smaller angles are 45° and by the Pythagorean theorem, the legs are $\frac{1}{\sqrt{2}}$

This tells us that

$$\sin\left(45^\circ\right) = \frac{1}{\sqrt{2}}$$
$$\cos\left(45^\circ\right) = \frac{1}{\sqrt{2}}$$

The exact values of the sine and cosine can be determined exactly for angles that multiples of 30° and 45° .

Angle	Sine	Cos	Angle	Sine	Cos	Angle	Sine	Cosine	Angle	Sine	Cos
0°			90°			180°			360°		
30°			120°			210°			300°		
45°			135°			225°			315°		
60°			150°			240°			330°		

Functions: We can find an exact expression for any multiple of 30° or 45°

Handout Part 2!

Solutions

Angle	(cos,sin)	Angle	(cos,sin)	Angle	(cos,sin)	Angle	(cos,sin)
0°	(+1,0)	90°	(0,+1)	180°	(-1,0)	360°	(0,-1)
30°	$\left(+\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$	120°	$\left(-\frac{1}{2},+\frac{\sqrt{3}}{2}\right)$	210°	$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$	300°	$\left(+\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
45°	$\left(+\frac{1}{\sqrt{2}},+\frac{1}{\sqrt{2}}\right)$	135°	$\left(-\frac{1}{\sqrt{2}},+\frac{1}{\sqrt{2}}\right)$	225°	$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	315°	$\left(+\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
60°	$\left(+\frac{1}{2},+\frac{\sqrt{3}}{2}\right)$	150°	$\left(-\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$	240°	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	330°	$\left(+\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

Demonstrate using a calculator to get sines and cosines.

Handout Part 3

Homework:

Read Section 8.3 Problems for 1/22 on page 542 #15-18, 37, 45, 50, 51, 54