Lesson Plan 19 Trigonometric Identities IV Parametric Equations, Math 48C Mitchell Schoenbrun

1) Attendance

2) Questions on Homework so far?

PARAMETRIC EQUATIONS

If f and g are functions on an interval I, then the points (f(t),g(t)) is a plane curve.

The equations:

x = f(t) y = g(t) where $t \in I$, are PARAMETRIC EQUATIONS for the curve, with parameter t.

Example:

$$x = t^2 - 3t$$
$$y = t - 1$$

t	Х	у
-2 -1	10	y -3 -2
-1	4	
0	0	-1
1	-2 -2	0
2	-2	1
3	0 4	2
2 3 4 5	4	2 3
5	10	4

GRAPH THIS

Note that the equations are not unique. If you substitute:

t + 1 for t or even t^2+t-5 the graph is the same:

Example: Removing the parameters:

$$x = t^{2} - 3t$$

$$y = t - 1$$

$$t = y + 1$$

$$x = (y + 1)^{2} - 3(y + 1) = y^{2} - y - 2$$

Example Modeling Circular motion:

 $x = \cos t$ $y = \sin t$

We can remove the t as follows: Square both equations and add

 $x^2 + y^2 = \cos^2 t + \sin^2 t = 1$

Which is the equation of the unit circle

Example:

$$x = \sin t$$
$$y = 2 - \cos^2 t$$

square the first equation and subtract from the second giving

$$y-x^{2} = 2-\cos^{2} t - \sin^{2} t = 1$$

 $y = x^{2} + 1$

Which is a parabola with vertex at (1,0)

Finding a parametric equation:

Find equations for line that goes through point (2,6) with slope 3:

$$\begin{aligned} x &= 2 + t\\ y &= 6 + 3t \end{aligned}$$

Removing the t we find that y=3x

The graphing Calculator can be used to show a curve using parametric equations:

Mode - PAR

Elipse x=3cos(t) y=2sin(t) Lissajous figures x=sin(2t) y=2cos(t) x=sin3t y=2cost

Form of a Polar equation:

 $r = \theta$

 $x = t \cos t$ $y = t \sin t$