
## Lesson Plan 17 Trigonometric Identities II, Math 48C Mitchell Schoenbrun

Attendance
Hand back Quiz and go over
Go over the hand outs.

Review of identities so far

| $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$              | $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$ | $\operatorname{sec}(\theta) = \frac{1}{\cos(\theta)}$ | $\csc(\theta) = \frac{1}{\sin(\theta)}$ |
|-----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-----------------------------------------|
|                                                                 |                                                    |                                                       |                                         |
| $\sin(-\theta) = -\sin(\theta)$                                 | $\cos(-\theta) = \cos(\theta)$                     | $\tan(-\theta) = -\tan(\theta)$                       |                                         |
| asa(-0) = asa(0)                                                | soo(-0) - soo(0)                                   | atn(-0) = atn(0)                                      |                                         |
| $\csc(-\theta) = -\csc(\theta)$                                 | $\sec(-\theta) = \sec(\theta)$                     | $ctn(-\theta) = -ctn(\theta)$                         |                                         |
| $\sin\left(\theta\right) = \cos\left(90^\circ - \theta\right)$  | $\cos(\theta) = \sin(90^\circ - \theta)$           |                                                       |                                         |
| $\csc(\theta) = \sec(90^{\circ} - \theta)$                      | $\sec(\theta) = \csc(90^{\circ} - \theta)$         |                                                       |                                         |
| $\tan\left(\theta\right) = ctn\left(90^{\circ} - \theta\right)$ | $ctn(\theta) = \tan(90^\circ - \theta)$            |                                                       |                                         |
|                                                                 |                                                    |                                                       |                                         |

Pythagorean Identities



The Pythagorean theorem tells us that  $x^2 + y^2 = r^2$ 

We also know that:

 $\sin \theta = \frac{y}{r}$  and  $\cos \theta = \frac{x}{r}$ Multiplying each of these by *r* gives

Multiplying each of these by r gives

 $y = r \sin \theta$  and  $x = r \cos \theta$ 

Plugging into the first equation we get

$$r^2 \sin^2 \theta + r^2 \cos^2 \theta = r^2$$

Dividing through by  $r^2$  gives us

## $\sin^2\theta + \cos^2\theta = 1$

Question: We've shown this is true for a triangle in the first quadrant. Why is it also true in the second, third and fourth quadrant. What other value(s) of  $\theta$  are we missing?

Two very useful versions of this are:

$$\sin^2 \theta = 1 - \cos^2 \theta$$
 and  $\cos^2 \theta = 1 - \sin^2 \theta$ 

From this we get to other useful versions:

 $\sin\theta = \pm \sqrt{1 - \cos^2 \theta}$  and  $\cos\theta = \pm \sqrt{1 - \sin^2 \theta}$ 

Other Pythagorean Identities:

Take  $\sin^2 \theta + \cos^2 \theta = 1$ 

Divide both sides by  $\cos^2 \theta$  and then by  $\sin^2 \theta$  to get

$$\tan^2 \theta + 1 = \sec^2 \theta$$
 and  $ctn^2 \theta + 1 = \csc^2 \theta$ 

Example:

Solve this equation:  $\cos^2 \theta + \cos^2 \theta \tan^2 \theta = 2.6 \cos \theta$ 

Example:

Simplify 
$$\left[1 - \cos^2\theta\right] \left[ctn^2\theta\right]$$

Example:

Simplify  $[\sec \theta + \tan \theta] [\sec \theta - \tan \theta]$ 

## VERIFYING IDENTITIES

Example:

Verify 
$$\frac{\sin\theta}{1-\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$$

Try cross multiplying:

 $\sin^2\theta = 1 - \cos^2\theta = \sin^2\theta$ 

## BUT THIS ASSUMES THE EQUALITY, WHICH IS NOT A VALID WAY TO VERIFY THE IDENTITY

Instead:

Expression A=Expression B:::Expression X=Expression X

So multiply Left side by  $\frac{1 + \cos \theta}{1 + \cos \theta}$ 

$$\frac{\sin\theta}{1-\cos\theta} \cdot \frac{1+\cos\theta}{1+\cos\theta} = \frac{1+\cos\theta}{\sin\theta}$$
$$\frac{\sin\theta(1+\cos\theta)}{1-\cos^2\theta} = \frac{1+\cos\theta}{\sin\theta}$$
$$\frac{\sin\theta(1+\cos\theta)}{\sin^2\theta} = \frac{1+\cos\theta}{\sin\theta}$$
$$\frac{1+\cos\theta}{\sin\theta} = \frac{1+\cos\theta}{\sin\theta}$$

Show the following Examples:

$$\csc\theta\tan\theta = \cos\theta\sec^2\theta$$

$$\frac{\sec(-\theta)}{\tan(-\theta)} = -\csc\theta$$

$$\cot^2 \theta = \csc^2 \theta - \cot \theta \tan \theta$$

Have students do the first 3 problems on the handout

Go Over problems

Break

Handout some examples to be worked on.