Lesson Plan 15 - Polar Coordinates H.1, H.2

- 1) Take attendance
- 2) Homework questions?

Lesson Plan 11 More Solving Triangles, Polar Coordinates Math 48C Mitchell Schoenbrun

Polar Coordinates.

What are Polar Coordinates?

r and θ



Each point has two coordinates (r, θ) instead of (x, y)

Polar coordinates are not unique, for example

$$(0,1)=(0,2)$$

$$(1,0) = (1,2\pi)$$

$$(1,0) = (-1,\pi)$$

Converting from Polar to Cartesian Coordinates:

$$x = r \cos(\theta)$$

$$y = r \sin(\theta)$$

Converting from Cartesian to Polar Coordinates:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \left(\frac{y}{x}\right) \text{ if } x \neq 0$$

Note that if x=0 then $\theta = \frac{\pi}{2}$ or $\theta = \frac{3\pi}{2}$

Also note that the range of \tan^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so you need to look at the sign of x and y to find the right quadrant:

(+,+) - first

(-,+) - *second

(-,-) - *third

(+,-) - fourth

For the second and third quadrant you will need to add π to get the right angle.

What is a polar equation?

r=5

r=0

$$r = \cos(\theta)$$

Have students graph $r=1+\cos(\theta)$ on their calculators. This is what is known as a "cartoid" because it looks like a heart.

Have students graph $r=2\cos(\theta)$ on their calculators. This should be a circle.

Have students graph $r=\cos(2\theta)$ on their calculators. This should be a clover leaf.

Symmetry in Polar coordinates.

- A) If an equation is unchanged by substituting $-\theta$ for θ then it is symmetric about the line θ =0 or the x axis.
- B) If an equation is unchanged by substituting -r for r then it is symmetric about the origin.
- C) If the equation is unchanged by replacing θ with $\pi \theta$, then it is symmetric about the line $\theta = \frac{\pi}{2}$

Area of a sector

The area of a circle is πr^2 .

So the area per radian of θ is $\frac{\pi r^2}{2\pi} = \frac{1}{2}r^2$

So if we have a curve in polar coordinates where r is a function of θ , $r = f(\theta)$ then the area contained between the limits of the curve and the curve is given by

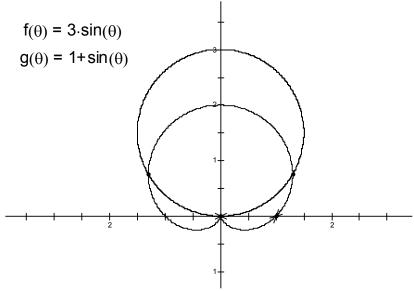
$$A = \int_{a}^{b} \frac{1}{2} \left[f(\theta) \right]^{2} d\theta$$

Example 1: Find the area enclosed by one loop of the four leaved rose $r = \cos(2\theta)$.

The area is swept out over the interval $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ so the area is

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \left[\cos(2\theta) \right]^2 d\theta = \int_{-\pi/4}^{\pi/4} \frac{1}{4} \left(1 + \cos(4\theta) \right) d\theta = \frac{1}{4} \left[\theta + \frac{\sin(4\theta)}{4} \right]_{-\pi/4}^{\pi/4} = \frac{1}{4} \left[\frac{\pi}{4} + \frac{\sin(\pi)}{4} - \left(-\frac{\pi}{4} + \frac{\sin(-\pi)}{4} \right) \right] = \frac{\pi}{8}$$

Example 2: Find the area of thre region that lies inside the circle r = 3 and outside the cartioid $r = 1 + \sin \theta$.

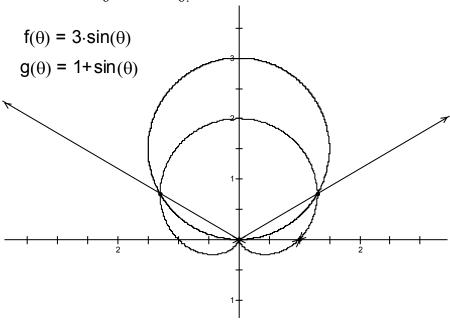


It's interesting to note that both curves go through the origin, but f(0) = 0 but

$$g\left(\frac{3\pi}{2}\right) = 0$$
. Since $(0,0) = \left(0,\frac{3\pi}{2}\right)$ they intersect at the origin.

Where else do they intersect?

 $3\sin(\theta) = 1 + \sin(\theta)$ at $\sin(\theta) = \frac{1}{2}$. Looking at the diagram one can see that these are the angles $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.



So
$$A = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (3\sin(\theta))^2 d\theta - \frac{1}{2} (1 + \sin\theta)^2 d\theta$$

Arc Length in Polar Coordinates

To find the length of a polar curve $r = f(\theta)$ for $a \le \theta \le b$ we use the equations

$$x = r\cos\theta = f(\theta)\cos(\theta)$$
$$y = r\sin\theta = f(\theta)\sin(\theta)$$

with θ as a parameter.

Using the arc length formula we get

$$L = \int_{a}^{b} \sqrt{\left(\frac{d}{d\theta} f(\theta) \cos(\theta)\right)^{2} + \left(\frac{d}{d\theta} f(\theta) \sin(\theta)\right)^{2}} d\theta =$$

$$L = \int_{a}^{b} \sqrt{\left(\cos(\theta) f'(\theta) + -\sin(\theta) f(\theta)\right)^{2} + \left(\sin(\theta) f'(\theta) + \cos(\theta) f(\theta)\right)^{2}} d\theta =$$

$$L = \int_{a}^{b} \sqrt{\left(\cos(\theta) f'(\theta)\right)^{2} - 2\cos(\theta) \sin(\theta) f(\theta) f'(\theta) + \left(\sin(\theta) f(\theta)\right)^{2} + d\theta} =$$

$$L = \int_{a}^{b} \sqrt{\left(\sin(\theta) f'(\theta)\right)^{2} + 2\cos(\theta) \sin(\theta) f(\theta) f'(\theta) + \left(\cos(\theta) f(\theta)\right)^{2}} d\theta =$$

$$L = \int_{a}^{b} \sqrt{\left(f'(\theta)\right)^{2} + \left(f(\theta)\right)^{2}} d\theta$$

Example 4:

Find the length of the cardioid with $r = 1 + \sin \theta$.

Note this cardioid is generated by $\theta \in [0, 2\pi]$

$$f(\theta) = 1 + \sin(\theta)$$

$$f'(\theta) = \cos(\theta)$$

$$L = \sqrt{\int_{0}^{2\pi} (1 + \sin(\theta))^{2} + \cos^{2}(\theta)} d\theta = \int_{0}^{2\pi} \sqrt{1 + 2\sin(\theta) + \sin^{2}(\theta) + \cos^{2}(\theta)} d\theta = \int_{0}^{2\pi} \sqrt{2 + 2\sin(\theta)} d\theta = 8 \text{ (By Calculator)}$$