1) Take attendance 2) Return MidTerm, Questions? 3) Arc Length

Assume we have a curve described by parametric functions $x = f(t)$ and

 $y = g(t)$ defined on some interval $a \le t \le b$.

As an approximation we can break the curve up as follows:

Where the points are $A = (x_0, y_0), (x_1, y_1) \dots (x_n, y_n) = B$ We know that between any two points the length is $L \approx \sum_{i} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$ $\boldsymbol{0}$ *n* i *j* $\left(\frac{\Delta y_i}{\Delta x_i}\right)$ *i* $L \approx \sum \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$ $\approx \sum_{i=0} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$ where $\Delta x = x_{i+1} - x_i$ and $\Delta y = y_{i+1} - y_i$ Note however that $f'(t) \approx \frac{\Delta x_i}{\Delta t}$ *t* $\approx \frac{\Delta}{2}$ $\frac{\Delta x_i}{\Delta t}$ and $g'(t) \approx \frac{\Delta y_i}{\Delta t}$ *t* $\approx \frac{\Delta}{\cdot}$ ∆ So we can express $\Delta x_i = f'(t) \Delta t$ and $\Delta y_i = g'(t) \Delta t$

Rewriting our sum $L \approx \sum_{i=1}^{n} \sqrt{(f'(t_i)\Delta t_i)^2 + (g'(t_i)\Delta t_i)^2}$ 0 $\int (t_{_t}) \Delta t_{_i}^{\,2} + (g^{\,\prime})^2$ *n* ι_i *j* $\Delta \iota_i$ *j* ι_j $\Delta \iota_i$ *i* $L \approx \sum_i \sqrt{(f'(t_i)\Delta t_i)}^2 + (g'(t_i)\Delta t_i)^2$ $\approx \sum_{i=0} \sqrt{(f'(t_i)\Delta t_i)}^2 + (g'(t_i)\Delta$ Letting the Δt 's go to zero we get the integral

$$
L = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt
$$
 or

$$
L = \int_{a}^{b} \sqrt{\left(\frac{df}{dt}\right)^{2} + \left(\frac{dg}{dt}\right)^{2}} dt
$$

Example 1:

Let $x = t^2$ and $y = t^2$ be parametric equations for a curve. What is the length of this curve from $(1,1)$ to $(4,8)$

For $x = 1$, $t = 1$ and for $x = 4$, $t = 2$ so we have the integral:

$$
L = \int_{1}^{2} \sqrt{\left(\frac{df}{dt}\right)^{2} + \left(\frac{dg}{dt}\right)^{2}} dt = \int_{1}^{2} \sqrt{\left(2t\right)^{2} + \left(3t^{2}\right)^{2}} dt = \int_{1}^{2} \sqrt{4t^{2} + 9t^{4}} dt = \int_{1}^{2} t \sqrt{4 + 9t^{2}} dt = \frac{1}{18} \int_{1}^{2} 18t \sqrt{4 + 9t^{2}} dt =
$$

Subtituting $u = 4 + 9t^2$ we find that $du = 18t$ so

$$
L = \frac{1}{18} \int_{1}^{2} 18t \sqrt{4 + 9t^2} dt = \frac{1}{18} \int \sqrt{u} du = \frac{1}{18} \left[\frac{2u^{3/2}}{3} \right] = \frac{1}{27} \left[\left(4 + 9t^2 \right)^{3/2} \right]_{1}^{2} = \frac{1}{27} \left[\left(40 \right)^{3/2} - \left(13 \right)^{3/2} \right] = \frac{1}{27} \left[80 \sqrt{10} - 13 \sqrt{13} \right]
$$

Note that if we are given a function in terms of *x* we can treat *x* as a parameter giving the equations $x = x$ and $y = f(x)$

Since $\frac{dx}{1} = 1$ *dx* $= 1$ our formulae becomes

$$
L = \int_{a}^{b} \sqrt{\left(\frac{df}{dx}\right)^2 + 1} dt
$$

Example 2:

Find the length of the arch of the parabola $y^2 = x$ from $(0,0)$ to $(1,1)$

Here we treat y as the parameter so we have

$$
L = \int_0^1 \sqrt{\left(\frac{dy^2}{dy}\right)^2 + 1} \, dy = \int_0^1 \sqrt{4y^2 + 1} \, dy =
$$

Substitute $u = 2y$ so that 2 $\frac{du}{dt} = dy$ giving the integral $\frac{1}{2} \int \sqrt{u^2 + 1}$ $\frac{1}{2}$ ∫ $\sqrt{u^2 + 1}$ *du* From our table #21 we have

$$
\int \sqrt{a^2 + u^2} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln \left(u + \sqrt{a^2 + u^2} \right) + c
$$
\n
$$
\frac{1}{2} \int \sqrt{u^2 + 1} \, du = \frac{1}{2} \left[y \sqrt{1 + 4y^2} + \frac{1}{2} \ln \left(2y + \sqrt{4y^2 + 1} \right) \right] =
$$
\nThis gives us\n
$$
\frac{1}{2} \left[\sqrt{5} + \frac{\ln \left(2 + \sqrt{5} \right)}{2} - \left(0 + \frac{1}{2} \ln \left(1 \right) \right) \right] = \frac{\sqrt{5}}{2} + \frac{\ln \left(2 + \sqrt{5} \right)}{4}
$$

Try Handout Problems

Average Value of a function.

Let's say you were to take the temperature every hour on the hour for 24 hours getting readings $T_0, T_1, ..., T_2$, then the average temperature for the day would be approximately

$$
Avg \approx \frac{\sum_{i=0}^{23} T_i}{24}
$$

If you were to then increase the readings to 48, 96, etc. You would end up with an integral for the average temperature that looks like this:

$$
Avg = \frac{1}{24} \int_{24 hours} T(t) dt
$$

We define a more general formula for the average of a function on an interval $[a,b]$ as

$$
Avg = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx
$$

Note and important feature of this. If the function is continuous, then there must some $x = c$ such that $f(c) = Avg$.

Simplistic reason why:

Since the function is bounded there will be a maximum and minimum value of the function. It should be clear that $\min \leq Avg \leq \max$.

But because of the function is continuous, it must pass through every value of the function between the min and max. So there must be a value c for which $f(c) = Avg$.

This is called the mean value theorem..

Example: for $f(x) = 1 + x^2$ on the interval $[-1, 2]$ find the average value of the function and find a *c* such that $f(c) = Avg$

First find
$$
\frac{1}{2-1} \int_{-1}^{2} 1 + x^2 dx = 2
$$

Then find $1 + c^2 = 2$

Note that in this case, *c* can be either 1 or -1