
Lesson Plan 7 - 6.3 Volume by Slicing 

 

1) Take attendance 

 

There are different strategies for finding volumes using integrals. 

If a volume has a fixed cross section: 

 
It is merely a matter of finding the area of the of the cross section and multiplying by the 

length. 

 

V A L= ⋅  

 

If a volume has a cross section of known area A(x) at each location x then we can find the 

volume as follows: 
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Example 1: Find the volume of a sphere. 
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So the radius of the cross section circles is 2 2R x−  

Since the area of a circle is 2rπ the area of each of the 

cross sectional circles is ( )2 2R xπ −  

 

So our volume is 
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Example 2: Cone base radius R and height L 

 

 
 

Here the radius of each circle is 
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The integral/volume  
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The Disk Method 

Example 3:  

 

Take the function ( )f x x=  and spin it around the X axis forming a solid.   What is the 

volume of this solid with respect to it's height. 

 

We have ( )
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( ) ( )22A x r x xπ π π= = =  
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Example 4:  Rotating around the Y axis. 

 

Let ( ) 3f x x=  be rotated around the Y axis on the interval [0,8] 
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But with 3y x=  we have the radius 1 3x y= .    

 

The area of the circles are then ( ) 2 2 3A y x yπ π= =  so  
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Example 4: "Washer" 

 

Let the area between y x=  and 2y x= be spun around the x axis.   

The area is now the area of an annulus or a ring, sometimes known as a washer. 

 

 

 

The area function is ( ) ( )22 2A x x xπ π= −  

 

Setting the two functions equal we find the points of intersection: 
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So we want to integrate as follows: 
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Hand out Worksheet, 

 

If time permits go over review sheet. 

 

 


