
Lesson Plan 6 -  Regions Between Curves 6.2 

 

1) Take attendance 

2) Return Quiz + Homework (Questions? 

 

 

 

We've been looking at a definite integral as the area beneath a curve, that is the area 

between the curve and y=0. 

 

If the y coordinate of the curve is < 0 we treat this as negative area. 

What about the area between two curves? 

 

 
Clearly the area below f(x) minus the area below g(x) is the area between the curves. 
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What if one or both functions drop below the X axis? 

 

  
 

We can add a constant amount to both functions, moving them up above the X-axis 

preserving the area.   Then: 
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What if we have two functions that cross over and we want all the area between them? 

 

 
 

Then we need to calculate 
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Example 1: Find the area enclosed by 2y x=  and 22y x x= −  
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g x( ) = 2⋅x-x2
f x( ) = x2

 
 

 

 

Setting these equal we find 
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So the points of intersection are 0 and 1. 

 

We integrate ( ) ( )
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Using Approximate integration 

Example 2: Find the area bounded by xy e=  and 1y x= +   
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g x( ) = x+2
f x( ) = ex

 
 

 

 

We look for the points 2xe x= + , but have no algebraic way to calculate the limits, so we 

use the calculator so solve this equation ( 2) 0xx e+ − =  using the Calc:2 Zero function. 

 

We get values -1.841406 and 1.1461932 

 

We could now use the anti-derivative: 
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1.949071483 

 

Or just use the Calc:7 Integration function. 

 

1.9490715 



Integrating a compound area 

Example 3: 

 

Find the area between the functions ( ) 2 3 6f x x x= − + +  and ( ) 2g x x=  
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g x( ) = 2⋅x
f x( ) = -x2+3⋅x+6

 
First we want to find the interval by solving 2 3 6 2x x x− + + = −  for 0x <  
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So the left intersection is 1x = −  

 

For 0x >  
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So the right intersection is 3x =  

 



So we integrate 
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Note however that  
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Sometimes it is easier to integrate along Y instead of X? 

Example 4: Find the area between 1y x= −  and 2 2 6y x= +  
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h x( ) = - 2⋅x+6

g x( ) = 2⋅x+6

f x( ) = x-1

 
Already we have a problem because the 2nd equation is not a function. 

But we can switch x and y 

1x y= −  and 2 2 6x y= +  or 

1y x= +  and 
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We find the intersection 
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( ) ( )4 2 0x x− + = so the interval is [ ]2,4−  

 

So 
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Sometimes it helps to use some simple geometry 

 

Example 5: 

 

Find the area of the region in the first quadrant bounded by 
2
3y x=  and 4y x= −  
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Note that we can calculate this finding 
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