Lesson Plan 10 - Polar Coordinates 10.3

1) Take attendance

2) Homework questions?

Polar Coordinates.

What are Polar Coordinates?

r and θ

Each point has two coordinates (r, θ) instead of (x, y)

Polar coordinates are not unique, for example

 $(0,1) = (0,2)$

 $(1,0) = (1,2\pi)$

$$
(1,0) = (-1,\pi)
$$

Converting from Polar to Cartesian Coordinates:

$$
x = r \cos(\theta)
$$

$$
y = r \sin(\theta)
$$

Converting from Cartesian to Polar Coordinates:

$$
r = \sqrt{x^2 + y^2}
$$

$$
\theta = \tan^{-1}\left(\frac{y}{x}\right) \text{ if } x \neq 0
$$

Note that if *x*=0 then 2 $heta = \frac{\pi}{2}$ or $heta = \frac{3}{4}$ 2 $\theta = \frac{3\pi}{2}$ Also note that the range of \tan^{-1} is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 2^{\degree} 2 $\left[\begin{array}{cc} \pi & \pi \end{array} \right]$ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so you need to look at the sign of x and y to find the right quadrant:

 $(+,+)$ - first $(-,+)$ - *second $(-,-)$ - *third $(+,-)$ - fourth

For the second and third quadrant you will need to add π to get the right angle.

What is a polar equation?

r=5

r=θ

 $r = cos(\theta)$

Have students graph $r=1+\cos(\theta)$ on their calculators. This is what is known as a "cartoid" because it looks like a heart.

Have students graph $r=2cos(\theta)$ on their calculators. This should be a circle.

Have students graph $r = cos(2\theta)$ on their calculators. This should be a clover leaf.

Symmetry in Polar coordinates.

A) If an equation is unchanged by substituting $-\theta$ for θ then it is symmetric about the line $\theta = 0$ or the *x* axis.

B) If an equation is unchanged by substituting -*r* for *r* then it is symmetric about the origin.

C) If the equation is unchanged by replacing θ with $\pi - \theta$, then it is symmetric about the line 2 $\theta = \frac{\pi}{4}$

Area of a sector

The area of a circle is πr^2 .

So the area per radian of θ is $\frac{2}{\pi}$ $\frac{1}{\pi^2}$ 2π 2 $\frac{\pi r^2}{2} = \frac{1}{2}r$ $\frac{1}{\pi}$ =

So if we have a curve in polar coordinates where *r* is a function of θ , $r = f(\theta)$ then the area contained between the limits of the curve and the curve is given by

$$
A = \int_{a}^{b} \frac{1}{2} \Big[f(\theta) \Big]^2 d\theta
$$

Example 1: Find the area enclosed by one loop of the four leaved rose $r = cos(2\theta)$.

The area is swept out over the interval $\theta \in \left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ $4^{\degree}4$ $\theta \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ so the area is

$$
A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \Big[\cos(2\theta) \Big]^2 d\theta = \int_{-\pi/4}^{\pi/4} \frac{1}{4} \Big(1 + \cos(4\theta) \Big) d\theta = \frac{1}{4} \Big[\theta + \frac{\sin(4\theta)}{4} \Big]_{-\pi/4}^{\pi/4} = \frac{1}{4} \Big[\frac{\pi}{4} + \frac{\sin(\pi)}{4} - \Big(-\frac{\pi}{4} + \frac{\sin(-\pi)}{4} \Big) \Big] = \frac{\pi}{8}
$$

Example 2: Find the area of thre region that lies inside the circle $r = 3$ and outside the cartioid $r = 1 + \sin \theta$.

It's interesting to note that both curves go through the origin, but $f(0) = 0$ but

$$
g\left(\frac{3\pi}{2}\right) = 0
$$
. Since $(0,0) = \left(0, \frac{3\pi}{2}\right)$ they intersect at the origin.

Where else do they intersect?

So
$$
A = \frac{1}{2} \int_{\frac{\pi}{6}} (3\sin(\theta))^2 d\theta - \frac{1}{2}(1 + \sin \theta)^2 d\theta
$$

Arc Length in Polar Coordinates

To find the length of a polar curve $r = f(\theta)$ for $a \le \theta \le b$ we use the equations

$$
x = r\cos\theta = f(\theta)\cos(\theta)
$$

$$
y = r\sin\theta = f(\theta)\sin(\theta)
$$

with θ as a parameter.

Using the arc length formula we get

$$
L = \int_{a}^{b} \sqrt{\left(\frac{d}{d\theta}f(\theta)\cos(\theta)\right)^{2} + \left(\frac{d}{d\theta}f(\theta)\sin(\theta)\right)^{2}}d\theta =
$$
\n
$$
L = \int_{a}^{b} \sqrt{\left(\cos(\theta)f'(\theta) + -\sin(\theta)f(\theta)\right)^{2} + \left(\sin(\theta)f'(\theta) + \cos(\theta)f(\theta)\right)^{2}}d\theta =
$$
\n
$$
L = \int_{a}^{b} \sqrt{\left(\cos(\theta)f'(\theta)\right)^{2} - 2\cos(\theta)\sin(\theta)f(\theta)f'(\theta) + \left(\sin(\theta)f(\theta)\right)^{2} + \frac{1}{2}\cos(\theta)f'(\theta) + \left(\cos(\theta)f(\theta)\right)^{2} + \frac{1}{2}\cos(\theta)f'(\theta) + \left(\cos(\theta)f(\theta)\right)^{2}}
$$
\n
$$
L = \int_{a}^{b} \sqrt{\left(f'(\theta)\right)^{2} + \left(f(\theta)\right)^{2}}d\theta
$$

Example 4: Find the length of the cardioid with $r = 1 + \sin \theta$.

Note this cardioid is generated by $\theta \in [0, 2\pi]$

$$
f(\theta) = 1 + \sin(\theta)
$$

\n
$$
f'(\theta) = \cos(\theta)
$$

\n
$$
L = \sqrt{\int_{0}^{2\pi} (1 + \sin(\theta))^2 + \cos^2(\theta) d\theta} = \int_{0}^{2\pi} \sqrt{1 + 2\sin(\theta) + \sin^2(\theta) + \cos^2(\theta)} d\theta = \int_{0}^{2\pi} \sqrt{2 + 2\sin(\theta)} d\theta = 8 \text{ (By Calculator)}
$$