
M1B/Schoenbrun Section 6.2 Regions Between Curves 1) 

1) Find the area between �  and �

First find the points of intersection by equating the two 
�

The parabola is greater than the line on the interval so

�

2) Find the area in the 1st quadrant between �  and �

Find the points of intersection by equating the two functions:

�

So the interval is [0,1]

�

The first integral is easily found to be 1.   To solve the second use substitution.
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3) Find the area bounded by � and � .

Integrate along the y axis.

Find the points of intersection by equating the two functions:

�

At x=0, y=1, so integrating along y we get:
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To solve the first integral substitute

�
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To solve the second integral

�

�

So �

4) Plot the area between �  and � without breaking up the integral, but instead using 
geometry.

By inspection, the curves intersect at 0 and 1.  The area under y=x can be found using the 

triangle area formula �

So we can calculate the area between the curves as:
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5) Find the area between � and �

You should approximate the intersection of the curves with your calculator.

You can see by inspection that one of the intersection points is at [0,0].   Using your calculator 
you should find the 2nd point at 1.1170213.

At this point you can either find the anti derivatives, �  and � or just enter 

�

finding the approximate answer .77530747

6) Find the area between � and �  where �

Equating the two curves we find �
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