M1B/Schoenbrun Linear Differential Equations

Solve the differential equations with the stated conditions:

1)
$$y'' + 5y' + 4y = 0$$
 where $y(0) = -1$ and $y'(0) = 1$

2)
$$y'' + 2y' + y = 0$$
 where a) $y(0) = 1$ and $y'(0) = 0$ and b) $y(0) = -1$ and $y'(0) = -1$

3)
$$y'' + 4y' + 5y = 0$$
 where a) $y(0) = \frac{1}{2}$ and $y'(0) = 1$
and b) $y(0) = -1$ and $y'(0) = -3$

For each equation, what is the dimension of the vector space formed by the solutions, and provide a basis for this vector space.

Find a general solution of the following differential equations.

4)
$$y'' + 4y' + 4y = 0$$

5)
$$y''' - 3y'' + 3y' - y = 0$$

Find the orthogonal trajectories. Describe the curves. Use your graphing calculator if helpful. 6) $y^2 = kx^3$

$$7) \ \ y = \frac{k}{x}$$