Foothill College Math 1B - Final Exam Mitchell Schoenbrun

1) Given the diagram of f(x) below with area A = 5, area B = 6 and area C = 4, evaluate the following integrals

$$\int_{0}^{5} f(x) dx = \frac{5 + (-6) + 4 = 3}{3}$$

$$\int_{0}^{5} |f(x)| dx = \int_{|5| + |(-6)| + |4| = 15}^{5}$$

2) Evaluate the following Integral EXACTLY

$$\int_{2}^{3} \frac{2x^{2} + 3}{x^{2}(x - 1)} dx = \int_{2}^{3} \frac{A}{x^{2}} + \frac{B}{x} + \frac{C}{x - 1} dx$$

$$Ax - A + Bx^{2} - Bx + Cx^{2} = 2x^{2} + 3$$

$$A = -3$$

$$B = -3$$

$$C = 5$$

$$\int_{2}^{3} \frac{2x^{2} + 3}{x^{2}(x - 1)} = \int_{2}^{3} \frac{-3}{x^{2}} + \frac{-3}{x} + \frac{5}{x - 1} dx =$$

$$\left[\frac{3}{x} - 3\ln|x| + 5\ln|x - 1|\right]_{2}^{3} = -\frac{1}{2} - 3\ln 3 + 8\ln 2$$

3) Evaluate the following indefinite integral

$$\int \cos^3 x \, dx = \int \cos x \left(1 - \sin^2 x\right) dx = \int \cos x - \cos x \sin^2 x \, dx =$$

$$\sin x - \frac{\sin^3 x}{3} + C$$

Note: Other equivalent solutions are possible

4) Find the Average value EXACTLY of the function $f(x) = x^2 \ln(x)$ on the interval [1,3]

$$Avg = \frac{\int_{1}^{3} x^{2} \ln x \, dx}{3 - 1}$$

$$f = \ln x \quad g' = x^{2}$$

$$f' = \frac{1}{x} \quad g = \frac{x^{3}}{3}$$

$$\int_{1}^{3} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln x - \int \frac{x^{2}}{3} \, dx\right]_{1}^{3} = 9 \ln 3 - \frac{26}{9}$$

$$Avg = \frac{9 \ln 3}{2} - \frac{13}{9}$$

5) The cross section of a solid is a triangle with base \mathcal{X} and height \mathcal{X}^2 . What is the EXACT volume of this solid on the x interval [1,5]

Area =
$$\frac{1}{2}x \cdot x^2 = \frac{x^3}{2}$$

Volume = $\int_{1}^{5} \frac{x^3}{2} dx = \frac{x^4}{8} \Big|_{1}^{5} = \frac{625 - 1}{8} = 78$

6) Find the EXACT length of the curve described by the function

$$f(x) = \frac{\sqrt{x}}{3} (x-3)_{\text{on the interval}} [0,4]$$

$$f'(x) = \frac{d}{dx} \left(\frac{x^{3/2}}{3} - x^{1/2} \right) = \frac{1}{2} \left(x^{1/2} - x^{-1/2} \right)$$

$$Len = \int_{0}^{4} \sqrt{1 + \left(f'(x) \right)^{2}} dx = \int_{0}^{4} \sqrt{1 + \left(\frac{1}{2} \left(x^{1/2} - x^{-1/2} \right) \right)^{2}} dx = \int_{0}^{4} \sqrt{\frac{4}{4} + \frac{1}{4} \left(x - 2 + x^{-1} \right)} dx = \int_{0}^{4} \sqrt{\frac{1}{4} \left(x + 2 + x^{-1} \right)} dx = \int_{0}^{4} \sqrt{\frac{x^{1/2} + x^{-1/2}}{2}} dx = \int_{0}^{4} \sqrt{\frac{x^{1/2} + x^{$$

7) Find
$$\frac{d}{dx} f(x)$$
 given that $f(x) = \int_{0}^{x^{2}} (g(u))^{2} du$

Applying the fundamental theorem of Calculus and the chain rule we find that

$$\frac{d}{dx} = \int_{0}^{x^{2}} (g(u))^{2} du = (g(x^{2}))^{2} \cdot \frac{d}{dx} x^{2} = 2x (g(x^{2}))^{2}$$

8) Use your calculator to find the approximate area enclosed by the functions

$$f(x) = 2\cos x$$
$$g(x) = 2\sec x - 1$$

between their intersection on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

1 Method: Graph
$$f(x)-g(x)=2\cos x-2\sec x-1$$
 and use the Calc: Zero function.

Note that both functions are even so their difference is even.

$$zero = \pm .67488885$$

$$Area = \int_{-.67488885}^{.67488885} 2\cos x - (2\sec x - 1) dx = 2 \int_{0}^{.67488885} 2\cos x - (2\sec x - 1) dx$$

Now use the Calc: Integrate function to find the area = .9175891227

9) Evaluate the following two improper integrals EXACTLY where possible.

$$\int_{0}^{\infty} \frac{1}{e^{x}} dx = \lim_{a \to \infty} \int_{0}^{a} \frac{1}{e^{x}} dx = \lim_{a \to \infty} \left[-\frac{1}{e^{x}} \right]_{0}^{a} = \lim_{a \to \infty} \left[-\frac{1}{e^{x}} - 1 \right] = 0 + 1 = 1$$

$$\int_{0}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{a \to \infty} \int_{0}^{a} x^{-1/2} dx = \lim_{a \to \infty} \left[\frac{x^{1/2}}{2} \right]_{0}^{a} = \lim_{a \to \infty} \frac{\sqrt{a}}{2} \to \infty$$

So this integral is DIVERGENT!

10) Find a solution to the differential equation
$$\frac{dy}{dx} = \frac{3x^2}{y}$$
 with the initial condition that $y(0) = 1$

Separating Variables we get

$$\int y \, dy = \int 3x^2 dx \longrightarrow \frac{y^2}{2} = x^3 + C$$

Plugging in the initial condition we find

$$C = \frac{1}{2}$$
 so the solution is $y^2 = 2x^3 + 1$ or $y = \sqrt{2x^3 + 1}$

Note the 1 must be under the square root sign.

Extra Credit)
Solve Problem 8) EXACTLY!

Setting
$$2\cos x = \frac{2}{\cos x} - 1$$
 and solving we find $\cos x = \frac{-1 \pm \sqrt{17}}{4}$.

The root $\cos x = \frac{-1 - \sqrt{17}}{4}$ would have a $\cos < -1$ so it is extraneous and we can now see

that
$$x = \cos^{-1} \left(\frac{-1 + \sqrt{17}}{4} \right)$$

The intersection points are therefore

$$\cos^{-1}\left(\frac{-1+\sqrt{17}}{4}\right)$$
 and $-\cos^{-1}\left(\frac{-1+\sqrt{17}}{4}\right) = \cos^{-1}\left(\frac{\sqrt{17}-1}{4}\right)$

So the Area is

$$\int_{\cos^{-1}\left(\frac{1-\sqrt{17}-1}{4}\right)}^{\cos^{-1}\left(\frac{\sqrt{17}-1}{4}\right)} 2\cos x - \left(2\sec x - 1\right) dx = 2\int_{0}^{\cos^{-1}\left(\frac{\sqrt{17}-1}{4}\right)} 2\cos x - 2\sec x + 1 dx = 0$$

$$2\left[2\sin x - 2\ln\left|\tan x + \sec x\right| + x\right]_0^{\cos^{-1}\left(\frac{\sqrt{17} - 1}{4}\right)}$$

This can be simplified more but the above answer or equivalent was sufficient.