Foothill College Math 1B - Final Exam Mitchell Schoenbrun

1) Given the diagram of f (x) below with area A =5, area B =6 and area C = 4,
evaluate the following integrals
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2) Evaluate the following Integral EXACTLY
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3) Evaluate the following indefinite integral

jcos3 xdx= Icosx(l—sinz x)dx: Icosx—cosxsinz xdx =
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Note: Other equivalent solutions are possible




4) Find the Average value EXACTLY of the function f ()C ) =X ? In ()C ) on the
interval [19 3]
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5) The cross section of a solid is a triangle with base X and height X

What is the EXACT volume of this solid on the x interval [1,5]
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6) Find the EXACT length of the curve described by the function

Jx

f(x) - T(x _3) on the interval [09 4]
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7)Find£f(x) given that f(x)= _[(g u
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Applying the fundamental theorem of Calculus and the chain rule we find that
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8) Use your calculator to find the approximate area enclosed by the functions

f (x) =2C0SX
g(x) =2secx—1

T T
between their intersection on the interval | E ? E

1 Method: Graph f(x) -8 (X) =2cosx—2secx—1
and use the Calc: Zero function.

Note that both functions are even so their difference is even.

zero = +.67488885

.67488885 .67488885
Area = .[ 2cosx—(2secx—1)dx =2 .[ 2cosx—(2secx—1) dx

—.6748885 0

Now use the Calc: Integrate function to find the area = .9175891227

9) Evaluate the following two improper integrals EXACTLY where possible.
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So thls integral is DIVERGENT!



dy _3x

10) Find a solution to the differential equation dx with the initial condition

Y
that J’(O) =1

Separating Variables we get
2

jydy:_[3x2dx—>y7=x3+C

Plugging in the initial condition we find

C =% so the solution is y* =2x" +1 or y =+/2x" +1

Note the 1 must be under the square root sign.



Extra Credit)
Solve Problem 8) EXACTLY!

Setting 2cosx =

—1and solving we find cosx =
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—
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The root cosx = T would have a cos < -1 so it is extraneous and we can now see
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that x =cos™ [

The intersection points are therefore
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This can be simplified more but the above answer or equivalent was sufficient.



